18O in Atmospheric CO2 Simulated by a 3-D Transport Model: A Sensitivity Study to Vegetation and Soil Fractionation Factors

P. Peylin1, P. Ciais1, P. P. Tans2, K. Six2, J. A. Berry3 and A. S. Denning4

1 LMCE, Laboratoire de Modélisation du Climat et de l’Environnement, CE Saclay, Bat 709, Orme des Merisiers, F-91191 Gif sur Yvette Cedex, France
2 Max-Planck Institut fur Meteorologie, Bundesstrasse 55, Hamburg, Germany
3 Carnegie Institution of Washington, Department of Plant Biology, Stanford, CA, USA
4 Colorado State University, Department of Atmospheric Sciences, Fort Collins, CO, USA

Received 28 October 1996; accepted 8 January 1997

Abstract. The 18O/16O ratio in atmospheric CO2 is a signal dominated by the processes by which the global land biosphere absorbs and respires CO2. Potentially it makes it possible to separate the photosynthesis from the total ecosystem respiration provided that leaf CO2 and soil CO2 have different isotopic signatures, that the air-sea exchange is correctly treated and that the isotopic value of anthropogenic emissions is well characterized. In this paper we simulate the 18O/16O of atmospheric CO2, using the 3-D tracer model TM2. We perform a specific sensitivity study of 18O/16O to the fractionation factors for the diffusion of CO2 out of the soils (εsoil) and into/out of the leaves (εleaf). The control run is similar to Ciais et al. (1996a). The latitudinal gradient, the seasonal amplitude in the northern hemisphere and the mean long term trend appear to be fairly sensitive to these two factors. The trend is nevertheless the most sensitive but it also highly depend on the atmospheric 18O/16O mean value and on the stratospheric enrichment of 18O in CO2 pertaining to the photolysis of O3.

©1997 Elsevier Science Ltd

1 Introduction

An increasing attention has been given to the isotopes of CO2 (13CO2 and more recently C18O16O), as they bring additional constrains to the global carbon cycle. The oxygen isotopic content of atmospheric CO2 is primarily driven by interactions between CO2 and the reservoirs of liquid water (see Eq. 2 in Table 1 for isotopic equilibrium between CO2 and H2O). Francey and Tans (1987) showed indeed that direct O atom exchange between CO2 and H2O vapor does not occur in the gas phase. On the other hand, when CO2 dissolves in water, an isotopic equilibrium for oxygen atoms takes place. Because the amount of water available is huge compared to the amount of CO2, the 18O/16O ratio in CO2 is determined by the one of water at a given temperature. Francey and Tans (1987) and Farquhar et al. (1993) pointed out the major influence of CO2 exchanges with leaf water (photosynthesis) and soil water (soil respiration). Ciais et al. (1996a,b) further tested these parameterizations in a global 3-D transport model, and obtained reasonable agreement between simulated and observed 18O/16O ratio in atmospheric CO2. Following their work, we present here a sensitivity study of this ratio to the fractionation factors involved during the diffusion of CO2 out of the soil and into/out of the leaves.

2 The observations

18O in CO2 is routinely measured at specific locations around the world from three independent air sampling networks: the NOAA-CU network of 17 sites (Tollier et al., 1996), the CSIRO-CIO network of 10 sites (Meijer et al., in preparation), and the CSIRO network of 5-6 sites (Francey et al., 1990). The 18O/16O isotopic ratios are reported in the δ scale (Eq. 1, Table 1), and 18O values are expressed in per mil (‰). At a global scale, three major features can be retrieved from the atmospheric observations.

1. A north minus south difference of roughly -1.5‰: the northern hemisphere is permanently depleted in 18O, as first observed by Francey and Tans (1987).

2. A strong seasonal cycle at high northern latitudes (Keeling, 1961): there is a maximum in early summer and a minimum in early winter. The observed peak-to-peak amplitude is 1.44‰ at Point Barrow (71°N, 156°W) while Cape Grim in the southern hemisphere (40°S, 140°E) has a lower peak-to-peak amplitude of 0.4‰.

3. The long time series of the CSIRO-CIO network (5 sites since 1977) shows no long term trend in the
mean atmospheric $\delta^{18}O$ (e.g., record at Mauna-Loa, Meijer et al., private communication).

Exchange with leaves and soils is strongly seasonal over temperate and boreal ecosystems which likely account for most of the observed $\delta^{18}O$ annual cycle. Moreover the combined effects of photosynthesis and respiration tend to decrease the local $\delta^{18}O$ in atmospheric CO$_2$ at high northern latitudes. This pattern follows the composition of precipitation which is depleted in ^{18}O relative to sea-water towards high latitudes and towards the interior of continents.

3 Biospheric fluxes

We coupled the surface exchange fluxes of CO$_2$ and C18O18O for each reservoir to an atmospheric 3-D tracer model (TM2) in order to simulate the global distribution of δ^{18}O in atmospheric CO$_2$. The TM2 model (Heimann, 1995) uses atmospheric forcing from ECMWF in Reading (UK) and it is run at a resolution of 7.5° by 7.5° in the horizontal, with 9 vertical levels (σ coordinates). We will focus on the global "pre-anthropogenic" steady state budget of δ^{18}O in atmospheric CO$_2$ and more specifically on the terrestrial biospheric fluxes. Figure 1 presents the CO$_2$ gross exchange fluxes between the atmosphere and the vegetation, the soils and the ocean, as well as the δ^{18}O of CO$_2$ in isotopic equilibrium with chloroplast water, soil water or sea surface water. The main equations used to describe these processes are reported in Table 1.

- **Leaf exchange**: During photosynthesis, all of the atmospheric CO$_2$ that enters the chloroplasts, isotopically equilibrates with the evaporating water, in presence of enzyme Carbonic Anhydrase. Some of the CO$_2$ is then assimilated by photosynthesis (net Assimilation, A) but more than half of it diffuses back to the atmosphere. Chloroplast water is enriched in 18O compared to soil water because heavier water molecules evaporate less efficiently than the lighter ones. The degree of enrichment of leaf water is sensitive to the relative humidity, the canopy temperature and to 18O/16O ratio in water vapor (Craig and Gordon, 1965). It can be thus highly variable in space and time: the Assimilation weighted mean value in our simulation is +1.2‰ (Fig. 1). Moreover C18O18O diffuses more slowly than C18O$_2$ into/ out of the leaves (coefficient α_1 in equation 3, Table 1). The overall effect of photosynthesis is to increase the δ^{18}O in atmospheric CO$_2$.

- **Soil exchange**: The decomposition of dead organic matter by soil microorganisms and root respiration in the soil produce CO$_2$ which diffuses up to the atmosphere. This net flux augmented by the stem and twigs respiration, balances on annual mean the net uptake of CO$_2$ during photosynthesis. We thus neglect any net carbon storage or loss by ecosystems on an annual mean basis. Diffusion in the soil is likely slow enough for CO$_2$ to fully exchange 18O with the water at the soil surface, even without Carbonic Anhydrase (Ciais et al., 1996a). The 18O/16O ratio of soil water tends to follow the variations in surface soil moisture, and thereof the precipitation. This leads in our simulation to a respiration weighted mean value of -3.9‰ for CO$_2$ isotopically equilibrated with soil water (Fig. 1). As for leaf exchange, a diffusive fractionation occurs during diffusion of CO$_2$ out of the soil (coefficient α_2 in equation 4, Table 1), and the effect of soil respiration is to decrease the δ^{18}O in atmospheric CO$_2$.
- **Ocean exchange**: The net CO$_2$ flux between the ocean and the atmosphere can be split in two gross (one way) fluxes (equation 5, Table 1). The CO$_2$ gross flux out of the ocean is assumed to be isotopically equilibrated with sea-water, according to reaction (2). The δ^{18}O of sea-surface water is computed from the sea-surface temperature and the salinity, as in Farquhar et al. (1993). The fractionation during CO$_2$ diffusion at the air-sea interface is very small (-0.8‰) and the global effect of air-sea exchange is to increase the atmospheric δ^{18}O value (Fig. 1).

- **Stratospheric enrichment**: Recent measurements of δ^{18}O of CO$_2$ reported by Gamo et al. (1989) showed a mass independent enrichment in 18O of 2‰ in the lower stratosphere (19 km) relative to the mean tropospheric value. This enrichment increases with altitude and pertains to the photolysis of O$_3$ in the stratosphere (Yung et al., 1991). We parameterized this effect by simply adding a source of C18O15O, constant in time and space in the upper two levels of the transport model in order to simulate a mean vertical profile of δ^{18}O of CO$_2$ close to that observed (Fig. 4).

The CO$_2$ gross fluxes between the atmosphere and the vegetation (F_{isa} and F_{al}, Table 1) are derived from the SIB2 land-surface parameterization (Sellers et al., 1986, 1996; Randall et al., 1996) coupled to the CSU-GCM (Randall et al., 1992; Randall and Pan, 1993; Fowler et al., 1996). The total respiration (F_{resp}, Table 1) equals the net assimilation of carbon over a year but it is distributed in time according to the ground moisture and soil temperature. The oceanic gross fluxes (F_{oa} and F_{so}, Table 1) are calculated using ΔCO$_2$ from the Hamburg Model of the oceanic carbon cycle (Maier-Reimer, 1993; Six and Maier-Reimer, 1996), and gas exchange coefficients derived from ECMWF 10 meter wind fields. These coefficients follow the Liss and Merlivat relationship (Liss and Merlivat, 1986) and they are scaled by a global factor of 1.9 in order to be consistent with the global inventory of 14C in the ocean. The monthly means δ^{18}O of precipitation are taken from the GISS simulations (Jouzel et al., 1987). We run the tracer model for each component described above and with the atmospheric wind fields corresponding to the period 1990-1994. The choice of this particular period has no importance regarding the mean budget of δ^{18}O in CO$_2$. The specific δ^{18}O field relative to one process can be then calculated. But as the δ fields are not additive we use the δ-anomalies (δ^*, defined in Eq. 1, Table 1) which are additive, in order to combine and compare several components (Fig. 2-3).

Fig. 2. Simulated δ^{18}O anomalies (δ^*, see equation 1, Table 1) of atmospheric CO$_2$ at the surface using the 3-D transport model TM2 (zonal average). The different components correspond to the separate δ^{18}O implied by leaf exchange, soil exchange, ocean exchange and stratospheric enrichment. The observations represent the mean value between 20° and 60° for the northern hemisphere and between 20° and 60° for the southern one (derived from a zonal fit to the observations made by the NOAA-CU network).

Fig. 3. Simulated δ^{18}O anomalies (δ^*) in atmospheric CO$_2$ simulated at Point Barrow (71°N, 156°W) for the period 1990 to 1993. The different components are as in Fig. 2. The grey region represent the observations from the NOAA-CU network (the range is two times the standard deviation of the function used to fit the observations).
4 Sensitivity of $\delta^{18}O$ in CO$_2$ to fractionation factors

4.1 Control run

Ciais et al. (1996b) realized a simulation of $\delta^{18}O$ in atmospheric CO$_2$ over the course of a year. Their results fit reasonably well the observations in terms of north minus south difference and seasonal amplitudes at the Point Barrow, Mauna-Loa and Cape Grim stations. We use in this study a slightly different control run. The CO$_2$ exchange coefficient for the oceanic fluxes (K_{ex} in equation 5, Table 1) is derived from Liss and Merlivat relationship instead of from the stability dependent theoretical formulation of Erickson (1993). We also included the stratospheric enrichment of ^{18}O in CO$_2$, for the "pre-industrial" scenario.

Figure 2 plots the zonal average of the simulated $\delta^{18}O$-anomalies (δ^*) at the surface. It shows the relative contribution of the terrestrial biosphere and of the ocean and the opposite effect of vegetation and soils. The simulated north-south gradient is compared to an estimate of the observed difference between the northern and the southern hemisphere (see caption, Fig. 2). This control run with only the "pre-industrial" fluxes explain a large part of the observed difference, although the additional depletion of the $^{18}O/^{16}O$ ratio in CO$_2$ due to fossil fuel burning is missing in this scenario.

Figure 3 presents the simulated trend in $\delta^{18}O$-anomalies (δ^*) at Point Barrow (71°N, 156°W) for each components as well as the observations from the NOAA-CU network. The trend is primarily determined by the biospheric exchanges, while the ocean plays a weaker role. There is a competing effect between soils and vegetation for the net budget of ^{18}O in atmospheric CO$_2$. While the ecosystem global respiration depletes the atmospheric CO$_2$ in ^{18}O, the photosynthesis enriches it. Ciais et al. (1996b) used only a global formulation similar to equation 6 (Table 1). They solved this global equation for the parameter α_1 to obtain a zero trend for $\delta^{18}O$ in atmospheric CO$_2$. In our simulation, we verified that with the TM2 model such an approach gives similar results if we compare the real trend simulated at many locations and the one calculated through the global budget.

Concerning the "pre-anthropogenic" steady state budget for ^{18}O in CO$_2$ we would like to simulate a long term trend close to zero as well as realistic inter-hemispheric difference and seasonal amplitude at Point Barrow. Even if the exchange time for the oxygen atom in CO$_2$ with the biosphere was estimated by Farquhar et al. (1993) to be much smaller than with the ocean (2.2 and 8.3 years respectively), the two reservoirs are connected to each other by the mean atmospheric $\delta^{18}O$ level. At long time-scales both reservoirs will thus contribute to the mean $\delta^{18}O$ value. Concerning the biosphere, the $\delta^{18}O$ fluxes (Eqs. 3-4, Table 1) are driven mainly by the CO$_2$ gross exchanges fluxes (F_{e2p}, F_{d1}, F_{d2}), the isotopic ratio of water in isotopic equilibrium with CO$_2$ and the fractionation during the diffusion of CO$_2$ (α_2 and α_1).

In the following, we specifically analyze the sensitivity of $\delta^{18}O$ in atmospheric CO$_2$ to the two fractionation factors.

4.2 Sensitivity to the fractionation factors ϵ_2 and ϵ_1

Figure 5 presents the results of three sensitivity tests where the two fractionation factors $\epsilon_2 = (\alpha_2 - 1) \cdot 10^3$ and $\epsilon_1 = (\alpha_1 - 1) \cdot 10^3$ vary over a given physical range (the other parameters were set as in the control run). These tests were performed with only one simulation. We multiplied the concentration fields produced by the transport model (TM2) with the desired ϵ_2 and ϵ_1 coefficients. This is possible because these coefficients only scale the ^{18}O fluxes (Eqs. 3-4, Table 1) and because the concentration fields produced by TM2 for each component are additive. The first plot (Fig. 5a) presents the $\delta^{18}O$ trend in atmospheric CO$_2$ at Point Barrow. Because of the relatively short mixing time for CO$_2$ in the atmosphere, the trend at this station represents well the mean atmospheric trend, when sources and transport are at steady state. We realized the same sensitivity test for the seasonal amplitude at Point Barrow (Fig. 5b) and for the global difference between the northern hemisphere and the southern hemisphere (Fig. 5c: difference calculated as in Fig. 2). In grey we shade the region that corresponds to realistic "observed" values for the three quantities. We made the assumption that
a steady state was reached at "pre-industrial" time with a long term trend close to zero and that the amplitude of the seasonal cycles has not significantly changed compared to the actual observations.

Concerning the inter-hemispheric difference (Fig. 5c) the contribution of the burning of fossil fuel is to increase by 0.3‰ this difference (e.g., Ciais et al. (1999b)). In this case we thus added this component to the "pre-

industrial" budget in order to compare simulated differences in a realistic way to values given by the actual observations. We can also notice that fossil fuel should have induced a negative trend in the atmosphere of -0.14‰ per year. As this decrease is not observed in the measurements, other mechanisms must compensate for this effect in today's δ¹⁸O budget as opposed to the "pre-industrial" simulation.

In each of these plots, we defined a physical range for the fractionation factors. The lower limit (-8.8‰) corresponds to molecular diffusion with slower diffusion of C¹⁸O²⁻ compared to C¹⁶O²⁻. On the other hand a value of zero would reflect no diffusive discrimination against ¹⁸O. For soils this extreme value seems unrealistic but the closer the CO₂ production to the soil surface is, the weaker the influence of the diffusive fractionation would be because of competition between the isotopic exchange of CO₂ with water and the diffusion of CO₂ out of the soil (Hesterberg and Siegenthaler, 1991).

The main feature that comes out of these graphs is a large sensitivity of the three quantities to the fractionation factors. Nevertheless the long term trend presents

Fig. 5. Sensitivity test of δ¹⁸O in atmospheric CO₂ simulated by TM2, to the fractionation factor involved during CO₂ diffusion out of soils (ε_{atm}) and CO₂ diffusion into/out of the leaves (ε_{leaf}). (a) correspond to the long term trend, (b) to the seasonal amplitude a Point Barrow (71°N, 156°W), and (c) to the inter-hemispheric difference (we took grid points between 20° and 60° for the northern hemisphere and between 20° and 60° for the southern one). (a) and (b) result only from the biospheric fluxes ("pre-industrial" scenario) while (c) includes also fossil fuel burning. The grey regions correspond to the observed range of values for each case.
the largest sensitivity within the physical range defined for ϵ_s and ϵ_t, compared to the seasonal amplitude and the north minus south difference. We also notice that for the trend and the north minus south difference, the iso-lines follow the diagonal which indicates a linear response to both fractionation factors. On the other hand, the seasonal amplitude is more sensitive to ϵ_t than to ϵ_s (the slope of the iso-lines is smaller).

4.3 Discussion

By changing the two fractionation factors we can find a set of values that would give a reasonable agreement with the observations for both the amplitude and the inter-hemispheric difference. Concerning the long term trend, a different set of values would be required. Nevertheless this latter constraint also highly depends on other parameters. It is first sensitive to the mean $\delta^{18}O$ value of atmospheric CO$_2$ (δ_i in equations in Table 1). A change of +1\%p in δ_i for the calculation of the C^{18}OO$_2$ flux associated with the photosynthesis ($^{18}F_{\text{id}_{\text{air}}}$ in Eq. 3, Table 1) would induce a change of +0.4\%p per year in the mean long term trend. Globally the measurements of δ_i remain quite sparse in term of spatial coverage and associated uncertainties are large, particularly over the tropics due to possible reaction between CO$_2$ and water in the flask samples. The trend also depends on the “stratospheric enrichment” of ^{18}O in CO$_2$ through isotopic exchange between CO$_2$ and O$_3$ (e.g., Yung et al. (1991)). Figure 4 plots the simulated vertical profile for the control run defined with a given “stratospheric enrichment” (solid line). In this case the isotopic exchange between CO$_2$ and O$_3$ induces a mean long term trend for $\delta^{18}O$ in atmospheric CO$_2$ of +0.36\%p yr$^{-1}$ (see Fig. 3). The dot curve in figure 4 shows the same vertical profile for a simulation where we double the “stratospheric enrichment”. The resulting profile is still in agreement with the observations of Gamo et al. (1989) and Thiemens and Jackson (1991), and in this case the contribution of the “stratospheric enrichment” to the mean long term trend is twice that in the control run: +0.72\%p yr$^{-1}$. It is still difficult to select one profile from the other because (i) the measurements of $\delta^{18}O$ in stratospheric CO$_2$ are lacking, (ii) the isotopic exchange between CO$_2$ and O$_3$ is still poorly understood and (iii) we know that the transport model TM2 overestimates vertical mixing between the troposphere and the stratosphere (the tropopause is located at too high altitudes). The range of uncertainty for δ_i and for the “stratospheric enrichment” are thus large enough to fulfill the trend constraint with different sets of values within the physical range for the fractionation factors ϵ_s and ϵ_t. The two other constraints (amplitude and inter-hemispheric difference) could be fulfilled with only one set of values for ϵ_s and ϵ_t, but this would lead to a fairly low discrimination of ^{18}O during CO$_2$ diffusion through leaves.

Table 1. Equations for exchanges of oxygen isotope of CO$_2$ with terrestrial ecosystems.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Net rate of CO$_2$ assimilation</td>
</tr>
<tr>
<td>F_{resp}</td>
<td>CO$_2$ released by soil and plant respiration</td>
</tr>
<tr>
<td>$F_{\text{id}_{\text{air}}}$</td>
<td>Flux of C18O16O from soils</td>
</tr>
<tr>
<td>F_{leaves}</td>
<td>Flux of C18O16O from leaves</td>
</tr>
<tr>
<td>F_{ocean}</td>
<td>Flux of C18O16O from ocean</td>
</tr>
<tr>
<td>F_{al}</td>
<td>Gross flux of CO$_2$ into the leaves</td>
</tr>
<tr>
<td>F_{ai}</td>
<td>Gross flux of CO$_2$ out of the leaves</td>
</tr>
<tr>
<td>F_{a}</td>
<td>Gross flux of CO$_2$ out of the ocean</td>
</tr>
<tr>
<td>K_{ex}</td>
<td>Exchange coefficient for CO$_2$ between the atmosphere and sea-surface water</td>
</tr>
<tr>
<td>ΔC_{O}</td>
<td>Difference in partial pressure of CO$_2$ between the air and sea water</td>
</tr>
<tr>
<td>α_{equ}</td>
<td>Isotopic equilibrium factor between CO$_2$ and H$_2$O</td>
</tr>
<tr>
<td>α_s</td>
<td>CO$_2$ fractionation factor for diffusion out of soil</td>
</tr>
<tr>
<td>α_t</td>
<td>CO$_2$ fractionation factor for diffusion into/out of the leaves</td>
</tr>
<tr>
<td>α_w</td>
<td>Fractionation factor for CO$_2$ during dissolution and diffusion in water</td>
</tr>
<tr>
<td>ϵ_s, ϵ_t, ϵ_w</td>
<td>(for $i = s, t, w$)</td>
</tr>
<tr>
<td>R_i</td>
<td>$^{18}O/^{16}O$ ratio of CO$_2$ in isotopic equilibrium with soil moisture</td>
</tr>
<tr>
<td>R_t</td>
<td>$^{18}O/^{16}O$ ratio of CO$_2$ in isotopic equilibrium with chloroplast water</td>
</tr>
<tr>
<td>R_s</td>
<td>$^{18}O/^{16}O$ ratio of CO$_2$ in isotopic equilibrium with sea-water</td>
</tr>
<tr>
<td>δ_i</td>
<td>Discrimination against ^{18}O (compared to ^{16}O) during net CO$_2$ assimilation by photosynthesis (Farquhar et al., 1993)</td>
</tr>
<tr>
<td>C_a</td>
<td>Number of moles of CO$_2$ in the atmosphere</td>
</tr>
<tr>
<td>C_t</td>
<td>Concentration field corresponding to process i</td>
</tr>
<tr>
<td>PDB-CO$_2$</td>
<td>CO$_2$ derived from Pee Dee Belemnite calcite</td>
</tr>
</tbody>
</table>
5 Conclusion

This short study discusses the sensitivity of the seasonal amplitude, the north minus south difference and the long term trend of $\delta^{18}O$ in atmospheric CO$_2$ to the fractionation factors for diffusion of CO$_2$ out of the soil and into/out of the leaves. Variation of these factors within the physical range induce large variations of the atmospheric $\delta^{18}O$ signal. The long term trend is nevertheless the most sensitive. But the simulation of this quantity highly depends on others processes such as the "stratospheric enrichment" of ^{18}O in CO$_2$ (discussed above) and on the isotopic composition of the water in the leaves. The $\delta^{18}O$ of the water inside the chloroplast is fairly sensitive to the $\delta^{18}O$ of the water vapor inside the canopy. As a first test we changed the $\delta^{18}O$ of water vapor to the extreme case where it is set to the $^{18}O/^{16}O$ ratio of precipitation (i.e., assuming that vapor in the canopy is constituted by 100%$_{\text{v}}$ of plant transpiration). In this case we obtain a positive long term trend with only little changes of the seasonal amplitude and the latitudinal gradient.

Acknowledgements. We would like to thanks the ESCOBA project, PNEDC-France for the financial support of this research.

References

