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Abstract Terrestrial CO2 flux estimates are obtained from two fundamentally differ-
ent methods generally termed bottom-up and top-down approaches. Inventory methods
are one type of bottom-up approach which uses various sources of information such
as crop production surveys and forest monitoring data to estimate the annual CO2
flux at locations covering a study region. Top-down approaches are various types
of atmospheric inversion methods which use CO2 concentration measurements from
monitoring towers and atmospheric transport models to estimate CO2 flux over a study
region. Both methods can also quantify the uncertainty associated with their estimates.
Historically, these two approaches have produced estimates that differ considerably.
The goal of this work is to construct a statistical model which sensibly combines
estimates from the two approaches to produce a new estimate of CO2 flux for our
study region. The two approaches have complementary strengths and weaknesses,
and our results show that certain aspects of the uncertainty associated with each of the
approaches are greatly reduced by combining the methods. Our model is purposefully
simple and designed to take the two approaches’ estimates and measures of uncer-
tainty at ‘face value’. Specifically, we use a constrained least-squares approach to
appropriately weigh the estimates by the inverse of their variance, and the constraint
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imposes agreement between the two sources. Our application involves nearly 18,000
flux estimates for the upper midwest United States. The constrained dependencies
result in a non-sparse covariance matrix, but computation requires only minutes due
to the structure of the model.

Keywords Atmospheric inversion · Carbon inventory · Climate change

1 Introduction

There is general consensus in the scientific community that changes to the Earth’s
climate are accelerating due to anthropogenic greenhouse gas emissions (IPCC 2007).
Currently, there is much discussion about reducing carbon emissions to curb the
increase of atmospheric CO2, one of the primary greenhouse gases. Of the anthro-
pogenic CO2 emissions, approximately 45 % remain in the atmosphere (Le Quéré et al.
2009) and the remainder is absorbed by the oceans and terrestrial environment; thus
understanding net exchange of CO2 between the terrestrial biosphere and atmosphere
is critical to predict future CO2 levels and consequently future climate change. An
aspect of the global carbon cycle that has been a challenge to fully quantify is the
exchange between regional sources and sinks of CO2 (Schimel et al. 2001). There are
two fundamentally different approaches for estimating terrestrial CO2 fluxes over a
study region and these are generally referred to as bottom-up and top-down methods.
The goal of this research is to better quantify terrestrial CO2 flux in a particular study
region by combining bottom-up and top-down estimates while accurately accounting
for their uncertainties. We employ a constrained least-squares approach to combine
the estimates and produce reconciled CO2 flux estimates at locations which cover the
region.

The mid-continent intensive (MCI) campaign is a scientific effort to study CO2 flux
in the upper-Midwest region of the United States.1,2 The MCI was selected as a test
region because the drivers of terrestrial CO2 fluxes are relatively well-understood. The
region is largely agricultural and tracked in national agricultural databases, and mod-
eling the atmospheric transport of CO2 is relatively simple as the region’s orography is
not complex. The underlying scientific question of this project could be summarized
as “How well can we estimate the CO2 flux for the MCI region?”

Inventories begin with measurements of quantities that influence carbon cycling
such as crop yields, forest growth and timber harvest, and fossil fuel consumption
(IPCC 2006). Because they begin from ground-based measurements, inventories are
referred to as bottom-up approaches. The data driving inventories are not direct mea-
surements of CO2 flux and moreover are from only a sample of locations which may
be either point-referenced (such as soil carbon measurements at study sites) or areal-
referenced (such as reported crop yield for a county). Thus, it is necessary to convert
these measurements into CO2 fluxes estimates by modeling (Ogle et al. 2010). Inven-
tories aim to provide a CO2 flux estimate for every location in a study region. Many

1 For contributing groups see http://www.nacarbon.org/cgi-nacp/web/investigations/inv_ic_profiles.pl.
2 http://www.nacarbon.org/cgi-nacp/web/investigations/inv_pgp.pl?pgid=108.
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inventories produce estimates on an annual timescale, partly because some of the
underlying data such as crop yields (USDA-NASS 2010) are only provided annually.

In contrast, atmospheric inversions begin with atmospheric CO2 concentration
measurements from monitoring towers and are thus deemed top-down approaches.
Atmospheric inversions are typically deterministic numerical models which use
observed meteorology, estimated boundary conditions, and often a “prior” estimate of
CO2 flux based on land-use characteristics to backwards-project CO2 flux estimates
for each location of the inversion’s domain (Tarantola 2005). Inversions can produce
estimates on a daily or sub-daily timescale, but these estimates are usually aggregated
up to weekly timescales or longer.

Both inventory and inversion approaches generally provide a measure of the uncer-
tainty associated with their point estimates. Recent updating of the North America
Carbon Plan has highlighted accurate accounting of the uncertainty as one of the
key shortcomings of previous work.3 Uncertainty quantification has been a primary
focus of the greater reconciliation project, and will continue to be studied by both the
inventory and inversion communities.

It is not clear whether the bottom-up or top-down approach provides a better or more
appropriate estimate of the true carbon flux, which is unmeasurable. At a fundamental
level, the inventories and inversions model different processes, make assumptions
about different things, and draw on different data sources. A combined estimate draws
on the two approaches’ complementary strengths.

Additionally, the two estimation procedures provide different information about
the carbon flux in the region. Inventories have information about different flux sources
such as fossil fuel emissions, cropland, and forest fluxes while the inversions are gener-
ally unable to distinguish between distinct CO2 flux sources. Quantifying the influence
of different sources is important for addressing potential mitigation for policy devel-
opment. Because they arise from densely sampled ground-based measurements, it
is generally believed that inventories have richer spatial information than inversions.
Inventories can express spatially-concentrated CO2 plumes from sources such as pow-
erplants and feedlots, whereas inversions have difficulty capturing these plumes as their
signal is dispersed when CO2 from these sources reaches the monitoring towers which
drive the inversions. In contrast, the region-wide CO2 flux is likely better constrained
by the inversion than the inventory. From its tower measurements, the inversion has
a measurement constraint on the total flux for the region, whereas model uncertainty
common to all locations in the inventory leads to greater uncertainty for the aggre-
gated regionwide flux. Inversions are able to capture temporal effects not seen by the
inventories which generally provide information only on an annual timescale. Knowl-
edge about changes in CO2 flux due to seasonality or effects on a subannual timescale
due to floods or droughts can be obtained from the inversion. Finally, the inventories
never “see” the atmosphere, but instead estimate atmospheric fluxes indirectly. For this
reason, inversions are important both for verifying inventory estimates and for deter-
mining compliance under regulatory policies should carbon-emission agreements be
enacted.

3 http://www.carboncyclescience.gov/USCarbonCycleSciencePlan-August2011.pdf.
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Although there is considerable interaction between the bottom-up and top-down
research communities, there has been little prior effort to combine or reconcile the
two sources of information. The work most closely related to ours is that of Chan
and Lin (2011) who combined agriculture census data for 20 counties in southwest
Ontario with a satellite-driven biospheric agriculture CO2-flux model via a normal-
normal Bayesian framework. Our scope is broader than Chan and Lin as we attempt
to account for all sources of CO2 flux rather than focusing only on agriculture, and
the Chan and Lin approach has no direct measurements of atmospheric CO2.

The objective of this study is to propose a statistical model which combines inven-
tory estimates with inversion estimates, and which appropriately accounts for the
uncertainty associated with each set of estimates. The ‘data’ we will analyze is actu-
ally model output from both an inversion and from inventories for several sources. In
this sense, our statistical model can be thought of as a meta-model. Combining the
output from the two approaches into one estimate is attractive because the resulting
estimate will draw on the strengths of the two sources. Combining the two sources
of information is also of scientific interest because, historically, flux estimates from
inventory sources and atmospheric inversions have shown large differences, although
the results from these two approaches have not necessarily been considered inconsis-
tent due to the large uncertainties (Pacala et al. 2001). Furthermore, it is hoped that
combining the two sources of information will provide additional insight about areas
to focus on for future research in CO2 flux estimation for both the bottom-up and
top-down methods.

We propose a constrained least squares approach to produce a unified estimate from
the inventory and inversion estimates. Although the inversion and inventory represent
different aspects of CO2 flux and on different time scales, they should agree on the
total annual flux from all sources at each location, and this is the constraint we impose.
The appeal of our constrained least squares approach is its simplicity, especially given
that CO2 flux estimates could be contentious if national or international commitments
to reduce carbon emissions are agreed upon and subsequent regulations require ver-
ification of emissions reductions. Our statistical model does not require additional
prior information or assume any sort of dynamics in the weekly flux estimates. Our
constrained least-squares approach is interesting statistically because it is used in a
manner different from typical constrained least-squares applications.

The remainder of the paper is structured as follows. In Sect. 2 we provide details
about the inventory estimates and the inversion which we integrate into our statistical
model. In Sect. 3.1 we describe our constrained model and inference. In Sect. 4 we
provide the combined estimate for CO2 flux and its associated uncertainties for our
study region. We conclude in Sect. 5 with a discussion.

2 Two sources of CO2 flux model output

In this section we provide the details about the specific atmospheric inversion and
inventory used in our analysis. Throughout the paper, our fluxes are from the
atmosphere’s perspective: a positive flux implies a net release of CO2 from the surface

123



Environ Ecol Stat (2013) 20:129–146 133

to the atmosphere, and a negative flux means there is net uptake of CO2 from the
atmosphere to the surface.

2.1 Inventory

We include key carbon sources in the inventory: forest biomass and associated har-
vested woody products, CO2 uptake in agricultural crop and associated harvest, live-
stock respiration, human respiration, and agricultural soil carbon changes. CO2 emis-
sions from combustion of fossil fuels is also included in this project’s inventory (Gur-
ney et al. 2009), but are omitted from the combined model since they are removed prior
to running the inversion for reasons we explain below. Each of the source inventories
employ survey data on the activity (such as forest plot level data or crop yields from
agricultural lands) as inputs into models which produce CO2 flux estimates for the
entire region (EPA 2011). Many of the measurements such as livestock population or
harvest yield are recorded at the county level, and thus the inventory data is compiled
by county. This data is then interpolated to a common 0.5 degree lattice also used for
the inversions. Details for each of these sources are given below.

The forest inventory comes from the Forest Inventory and Analysis (FIA) program
of the US Forest Service (Smith et al. 2007). Negative fluxes result from forest estab-
lishment and growth, and are maintained in the terrestrial pool when this carbon is
incorporated into harvested woody products. Positive fluxes result from disturbance,
such as fire and pest outbreaks, as well as the decay of harvested woody products.

By its nature, harvest flux must be negative. Although the CO2 uptake in croplands
is mostly lost during a single year because the majority of crops in the region are
short-lived annuals, crop commodities resulting from harvest can be transported out
of the region leading to an atmospheric CO2 sink in the region (West et al. 2011).
In terms of CO2 sources and sinks, it is important to note that harvest represents an
“apparent” sink because this carbon will be returned to the atmosphere within a few
years as the commodities are used.

The human respiration data were derived from population data in the region (West
et al. 2009), as were livestock estimates (West et al. 2011). Both the human respiration
and livestock fluxes represent respired CO2 and are therefore positive.

The agricultural soil carbon estimates are based on land use and management activ-
ity data for cropland and grasslands in the region (EPA 2011; Ogle et al. 2010).
Although it is the smallest of the fluxes at an annual timescale, soil carbon is an
important quantity for mitigation as it (along with forest) represents a longer-term
carbon sequestration source/sink (Paustian et al. 1997).

Even though this study region is relatively sparsely populated, fossil fuel emissions
are by far the largest contributer to CO2 fluxes. Fossil fuels are a source of 170 Tg C
for the region, while the annual flux estimates from forest, harvest, human respiration,
livestock, and soils are −23, −100, 5, 16, and −0.015 Tg C respectively. Because
CO2 from fossil fuels is highly concentrated around population centers and power
plants, and because data from tracers unique to fossil fuels are limited, the fossil fuel
signal is hard to resolve by the atmospheric inversions. Fossil fuel consumption is
also relatively well known (Gurney et al. 2009), and thus the atmospheric inversions
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Fig. 1 Point estimates of annual CO2 flux from the inventory sources for the MCI region consisting of
Iowa (center) and parts of six other states (clockwise, from top left) South Dakota, Minnesota, Wisconsin,
Illinois, Missouri, Kansas, and Nebraska. Units are Gg C per grid cell from CO2 flux. Note that the scales
differ for each source

subtract it out before running their models. As our aim is to combine the atmospheric
inversion estimates with the inventory estimates, we leave fossil fuels out of our
analysis. However, it is important to note that any quantification of regional CO2
flux will require an accounting of fossil fuel consumption.

Figure 1 gives the point estimates for all inventory sources. The estimates for
CO2 flux due to forest are mostly negative with the largest sinks in Wisconsin and
Missouri; however a few cells show a positive flux estimate. The CO2 flux estimates
from harvest show the deepest sinks in the largely corn and soybean-producing regions
of Iowa and Illinois. Human respiration and fossil fuel fluxes are largely concentrated
around the largest metropolitan centers in this region: Minneapolis/St. Paul, St. Louis,
and Chicago (although the grid cell which contains the city of Chicago lies just east
of our study region). Livestock is less concentrated, but a few cells indicate large
livestock concentrations, for instance in the extreme northwest corner of Iowa. Finally
the CO2 flux estimates from soils are both positive and negative, but the actual fluxes
are considerably smaller than the other sources and therefore have less influence on
the overall inventory.

2.2 Inversion

Although there have been other methods proposed for atmospheric inversions (Boc-
quet 2008; Chevallier et al. 2010), most atmospheric inversions can be understood
as Gaussian state-space or data assimilation models (Schuh et al. 2010; Lauvaux
et al. 2009; Göckede et al. 2010; Gourdji et al. 2012). Inversion modelers often
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use Bayesian terminology when describing their models. An inversion estimate at
a given time begins with a “prior” flux estimate for all grid cells based on known
land-use characteristics, plant phenology, and meteorology for this time. Then, given
tower-based CO2 concentration measurements for this time period and an atmospheric
transport model, a “posterior” flux estimate is produced for each location in the
study region. In addition to the point estimate, the state space model produces a
covariance matrix describing the uncertainty of the flux estimates for each time
period.

The inversion for this study is a high resolution inversion that produces estimates
for the MCI study area (Lauvaux et al. 2011). The boundary conditions are based
on CO2 concentration 3D fields from the CarbonTracker system (Peters et al. 2007)
corrected by weekly aircraft profiles from the NOAA aircraft program (Sweeney et al.
2011). The prior fluxes were computed with the SiBcrop vegetation model (Lokupitiya
et al. 2009) enhanced to describe crop phenology over the region. The atmospheric
transport model WRF-Chem was run at 10 km resolution over the domain and coupled
to a Lagrangian Dispersion Model in backward mode (Uliasz 1994) to generate the
linearized adjoint of the transport. The inversion produces estimates on a 20 km grid
using an analytical matrix inversion technique, but these results are then interpolated
to a standard 0.5-degree grid for easy comparison. We analyze model output on the
region shown in Fig. 2, corresponding to the 0.5 degree cells that are completely
covered by the inversion’s native grid.

The Lauvaux et al. (2011) inversion is the most data-constrained CO2 inversion
thus far as tower measurements were provided by the “ring of towers”.4 Histori-
cally, there have only been a few highly-calibrated CO2 concentration towers scattered
across the continental United States, making high-resolution atmospheric inversions
ill-conditioned. The ring of towers was a short-term project whose aim was to under-
stand what information a dense network of towers over a small region could provide,
and the MCI was selected as a logical study region for the aforementioned reasons. The
ring of towers became operational in the summer of 2007 and was decommissioned
at the end of 2009.

For this paper we work with preliminary inversion results which have been produced
for 2007. A final inversion for 2007 and 2008 will be produced as part of the greater
MCI project. Although the inversion produces flux estimates on a sub-daily time scale,
in this study we use flux estimates that are compiled weekly. In fact, for the inversion
we use, a “week” is equal to 7.5 days, and the year is broken into 48 periods which we
will continue to refer to as “weeks”. Because the ring of towers was not operational
until the summer of 2007, the first 20 weeks of inversion estimates and covariance
matrices are actually taken from the prior.

The total CO2 flux estimates for weeks 12, 25, and 35 shown in Fig. 2 illustrate
the annual carbon cycle. Week 12 is prior to the growing season, and the decay from
previous years’ plant litter results in a small positive flux for most of the region. Week
25 is the height of the growing season and there is a large negative flux region-wide,
with deep sinks in the corn-producing regions of Iowa and Illinois. Week 35 shows

4 http://ring2.psu.edu/.
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Fig. 2 Point estimates of CO2 flux from all sources from the inversion for weeks 12 (left), 25 (center), and
35 (right). Units are Gg C per grid cell. Note that the scales for each figure differ

a small positive flux in the south and negative flux of similar magnitude in the north,
consistent with conditions at the end of the growing season.

2.3 Uncertainty estimates provided by the inversion and inventory

Uncertainty estimation is an area of active research for both the inversion and inventory
communities. The left panels of Fig. 3 show both point-wise standard deviation and
spatial correlation for week 25 of the inversion. The week 25 inversion estimate has
a fairly uniform level of uncertainty across the region, with slightly larger standard
deviations at locations with larger estimated fluxes such as in Iowa and Illinois. The
spatial correlation map shows correlations with the marked location in Northern Iowa,
and the correlations range from (−0.11, 0.57) over the study region. The correlation is
positive at short distances and drops off to become slightly negative at longer distances.
The negative correlation at longer distances constrains the level of uncertainty for the
inversion’s estimate of regional flux, even though individual locations’ measurements
are not as well constrained.

A Monte Carlo approach was employed by each of the inventory contributors to
obtain the covariance matrices for the inventory sources. Density functions for mea-
sured quantities, model parameters, and other model inputs were created, drawn from,
and then used within the inventory models to produce 100 realizations of possible
inventory estimates. Because the inventories for different sources are produced using
different methods, there is some difference in the uncertainties associated with the
sources. These differences largely reflect that some sources are better understood and
quantified than others. We used the Monte Carlo realizations to produce empirical
covariance matrices for each inventory source. As the number of locations was greater
than the number of draws, we used a standard shrinkage covariance estimator.

The center and right panels show point-wise standard deviation and spatial cor-
relation for the forest and harvest inventories. The standard deviation for the forest
inventory is much larger than that for the harvest inventory. Measuring the annual
CO2 flux from forest growth and change is difficult due to the 5-year return sam-
pling of the FIA as well as significant measurement uncertainty. In contrast, because
it is linked to the nation’s food supply, crop harvest data are relatively well-known
at the county level and the uncertainty associated with the CO2 flux is largely due to
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Fig. 3 Top row: Standard deviations associated with the estimates. Bottom row: Spatial correlation for the
estimates with the marked location. Left column is for the inversion estimate for week 25, center column is
for the forest inventory, and right column is for the harvest inventory

uncertainty in the parameterizations which convert harvest data into CO2 flux. The
spatial correlation of these two inventories also reflects their differences. The forest’s
spatial correlation is consistent with a process dominated by measurement uncertainty;
the spatial correlation is nearly negligible with values ranging from (−0.03 to 0.07).
The large spatial correlation in the harvest estimates results from the variation in model
parameters which are reflected throughout the region.

3 Statistical model and inference

3.1 A constrained model for estimation

Constrained least squares is a well-known statistical approach, and obtaining inference
for such problems requires solving a Lagrange multiplier problem. Constrained least
squares problems regularly arise in hypothesis-testing problems for linear models,
see for instance sections 6.3 and 6.11 of Graybill (1976). Constrained least squares
optimization also arises in universal kriging, a spatial prediction method described in
most spatial statistics books such as Section 3.2 of Cressie (1993) or Section 5.2.2
of Schabenberger and Gotway (2005). However, the setting in which we employ
constrained least squares differs from these typical applications. Here we do not aim
to test a hypothesis or perform spatial prediction, rather our goal is estimation. Our
constraints impose agreement between the inversion and inventory flux estimates at
each location in the study region, and this differs from the small number of constraints
from a set of hypotheses to be tested or single constraint in ordinary kriging due to
requiring an unbiased estimator.
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Assume the N locations in our study region are denoted by z1, . . . , zN . Let Y·t =
(Y·t (z1), . . . , Y·t (zN ))T , where Y·t (z j ) denotes the inversion flux estimate for location
z j and week t = 1, . . . , T . The · in the subscript denotes that the inversion estimate
is the total of all sources s = 1, . . . , S. We assume that Y·t = X·t + W·t , where
X·t = (X ·t (z1), . . . , X ·t (zN ))T is the vector of true fluxes from all sources for all
locations in study region D for week t . W·t ∼ N (0, R·t ) is an N × 1 random vector
which represents the error associated with the inversion estimate for week t and R·t
is the error covariance matrix provided by the inversion.

Likewise, let Ys· denote the vector of annual inventory estimates at all locations
for source s = 1, . . . , S. We order the sources alphabetically: s = 1, 2, 3, 4, 5 cor-
respond to forest, harvest, human respiration, livestock, and soils respectively. We
similarly assume that Ys· = Xs· + Ws·, where Xs· is the true annual CO2 flux from
source s, Ws· ∼ N (0, Rs·) is the error associated with the inventory estimate, and Rs·
is the covariance matrix obtained from the Monte Carlo uncertainty simulation for
source s. Finally, assume that W·t , t = 1, . . . , T and Ws·, s = 1, . . . , S, are mutually
uncorrelated.

Let Y = (Y T·1 , . . . , Y T·T , Y T
1· , . . . , Y T

S·)T , X = (XT·1, . . . , XT·T , XT
1·, . . . , XT

S·)T ,
W = (W T·1 , . . . , W T·T , W T

1· , . . . , W T
S·)T , and R be the block diagonal matrix

diag(R·1, . . . , R·T , R1·, . . . , R·S). Then, the unconstrained model can be written as

Y = X + W , where E(W) = 0, and Cov(W) = R. (1)

We impose the N -dimensional constraint

T∑

t=1

X·t =
S∑

s=1

Xs· (2)

which implies the total of the weekly fluxes (from all sources) equals the total of the
annual source fluxes at each location. This constraint can be written as

AX = 0, (3)

where A is the N × N (T + S) matrix

A =
⎡

⎣I . . . I︸ ︷︷ ︸
T

−I . . . − I︸ ︷︷ ︸
S

⎤

⎦ ,

and I is the N × N identity matrix.

3.2 Inference

We use the method of Lagrange multipliers to minimize the weighted least squares

(Y − X)T R−1(Y − X) (4)
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subject to the constraint (3). Let λ be the N × 1 vector of Lagrange multipliers. From
(4) and (3), we obtain the Lagrange function

(Y − X)T R−1(Y − X) + 2λT AX, (5)

where the factor 2 is chosen to allow cancellation below. Taking derivatives with
respect to the elements of X and λ and setting equal to zero yields the system of
equations

[
R−1 AT

A 0

](
X
λ

)
=

(
R−1Y

0

)
. (6)

Inverting the 2 × 2 block matrix on the left-hand-side of (6) yields

[
R−1 AT

A 0

]−1

=
[

R − R AT (AR AT )−1 AR R AT (AR AT )−1

(AR AT )−1 AR −(AR AT )−1

]
. (7)

Thus,

X̂ = Y − R AT (AR AT )−1 AY , (8)

and furthermore, it is straightforward to show that

Var(X̂) = R − R AT (AR AT )−1 AR. (9)

Notice X̂ is unbiased, since X̂ = (X + W)− R AT (AR AT )−1 A(X + W), E[W ] = 0,
and AX = 0. Furthermore, consider any estimator of the form vT Y ; i.e., an estimator
which is a linear combination of the raw data Y . Note that

Var(vT X̂) = vT Rv − vT R AT (AR AT )−1 ARv ≤ vT Rv = Var(vT Y),

since R AT (AR AT )−1 AR is a non-negative definite matrix.

4 Results

4.1 Computation

The number of locations in our dataset is N = 336, the number of weeks is T = 48,
and the number of sources is S = 5. Thus, Y , X , and R are of dimension N (T + S) =
17808. Our constraint matrix A is of dimension N × N (T + S) = 336 × 17808.

As R is block diagonal and both it and A are mostly sparse, we use the sparse matrix
package spam in R (Furrer 2008). As sparse matrices, R is 68.5 MB, and A is 0.2
MB. Ultimately, we need to compute R AT (AR AT )−1 A and R AT (AR AT )−1 AR. The
matrix AR AT is dimension 336 × 336 and is easily inverted. Let M = (AR AT )−1.
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However, R AT M−1 A and R AT M−1 AR are large and not sparse; if constructed com-
pletely these matrices are over 3 GB in size. However, due to the block-diagonal nature
of R and structure of A, both of these matrices have a simple block pattern and do not
need to be constructed entirely. We refer to the block-rows and block-columns of these
matrices by indexes (·, t) for t = 1, . . . , T and (s, ·) for s = 1, . . . , S. R AT M−1 A is
such that the (·t)th row (of blocks) is given by

R·t M . . . R·t M︸ ︷︷ ︸
T

−R·t M . . . − R·t M︸ ︷︷ ︸
S

,

and the (s, ·)th row is given by

−Rs·M . . . − Rs·M︸ ︷︷ ︸
T

Rs·M . . . Rs·M︸ ︷︷ ︸
S

.

The matrix R AT M−1 AR has R·t M R·t ′,−R·t M Rs·, and Rs·M Rs′· for the ((·t), (·t ′)),
((·t), (s·)), and ((s·), (s′·)) blocks respectively. Working with these blocks rather than
the entire matrices tremendously reduces the computational burden. On a laptop with
a 2.8 GHz processor and 4 GB of memory, the most difficult of the computations
required to produce the results in the following section took only minutes, and most
were practically instantaneous.

4.2 Carbon flux estimates

Figure 4 shows maps of the annual flux estimates from all sources from the inversion,
inventory, and constrained least squares (combined) estimate. Because the inventory
estimates generally have less uncertainty at the grid-cell level, the combined esti-
mate more closely resembles the inventory map than the inversion map. However,
some smoothing of the inventory estimates is evident, most notably in Wisconsin
and central Missouri locations dominated by forest which has the most uncertainty
of the inventory sources. The combined pointwise standard deviation estimate shows
the expected decrease in uncertainty. Interestingly, the combined estimate’s standard
deviation is remarkably uniform, as the agricultural areas in Iowa and Illinois with the
largest standard deviations in the inversions are the among the most constrained areas
in the inventory.

A primary quantity of interest is the total annual carbon flux estimate for the entire
study region from all sources. The left panel of Fig. 5 shows the inversion estimate,
the inventory estimate, and the combined estimate for the regional annual flux as well
as 95 % confidence intervals for each of these estimates. The point estimates for these
three quantities are respectively −132, −102, and −112 TgC. The right panel shows
the inversion, inventory, and combined estimate for a single grid cell; the selected cell
is the location in Iowa shown in the week 25 and cropland harvest spatial correlation
maps in Fig. 3. It is interesting that the combined total estimate in the left panel is
closer to the inventory total estimate than the inversion estimate, despite the fact that
the inversion estimate has a smaller confidence region for the regional flux. The right
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Fig. 4 (Top row) Maps of the inversion, inventory, and combined annual flux estimates from all sources,
units are GgC per grid cell. (Bottom row) Maps of the inversion, inventory, and combined pointwise standard
deviations

panel helps to explain this counterintuitive behavior. For the regionwide flux estimate
in the left panel, the inventory has greater uncertainty than the inversion largely due
to the strong positive spatial correlation shown for harvest in Fig. 3 and due to the
fact that the total flux for the region is well-constrained by the tower measurements
that drive the inversion. However, at an individual location, the inventory has much
less uncertainty than the inversion. As the regional combined estimate is calculated
as the sum of the flux estimates at each location (shown in Fig. 4), and the combined
estimate at each location will tend to favor the inventory, the regional estimate ends
up favoring the inventory.

Figure 6 shows weekly point estimates and 95 % confidence intervals for total
carbon flux for the study region, along with the weekly estimates and 95 % confidence
intervals provided by the inversion. Although there is not a dramatic difference in the
weekly total flux estimates, the constrained least squares estimates tend to be more
positive (most noticeably in weeks 12–18) due to the influence of the inventory, and
that the confidence intervals are more narrow.

Figure 7 shows the point estimates and 95 % confidence intervals for the regional
CO2 flux for each source, along with the original estimates provided by the inven-
tory. Both the forest and cropland harvest estimates have become more negative to
better agree with the inversion which estimated a larger sink for the study region
than did the inventories. The confidence interval for the cropland harvest estimate is
also greatly reduced. Recall the large spatial correlation in the harvest estimate due
to the model uncertainty, which contributes to the large confidence region for the
harvest inventory estimate. The inversion helps to constrain the regionwide total flux
estimate which, in turn, helps to restrict the cropland harvest estimate uncertainty.
The better-constrained cropland harvest estimates could provide some insight about
values for model parameters for this important source.
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constrained least squares estimate (right/black). Units are Gg C

To better see the differences between the combined estimates and the inversion out-
put, Fig. 8 shows the difference X·t − Y·t for t = 12, 25, and 35. Week 12 shows that
the combined estimate is greater (less negative) than the original inversion estimate,
which primarily reflects that the inventory total flux estimate is not as negative as that
from the inversion. However, both week 25 and 35 show a negative difference in west-
ern Iowa, indicating that the combined estimate has a deeper sink in this region than
the original inversion. Likewise, we produce maps of Xs· − Ys·, to better understand
the differences between the combined estimate and the inventories. The difference in
forest estimates generally represents a spatial smoothing done to this source, probably
largely due to the smoothness found in the inversion estimates and the large uncer-
tainty associated with the forest estimates at each location. The large difference in the
cropland harvest estimate along the Mississippi River near the border between Iowa,
Minnesota and Wisconsin is interesting. The inversion estimates a much larger sink in
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Fig. 7 Flux estimates and 95 % confidence intervals from the different inventory sources for the entire
study region. Left are the original inventory estimates, right are the estimates from the combined model.
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Fig. 8 Differences between the combined model estimates and (top row) inversion estimates for weeks 12,
25, and 35, and (bottom row) between the combined model estimates for the forest and harvest inventories.
Units are Gg C per grid cell

this area than does the inventory, but why this result is attributed to cropland harvest
rather than forest is unclear.

5 Conclusions

We have used a constrained least squares approach to combine inventory and inversion
CO2 flux estimates. The new estimate draws on the strengths of both the inventory and
inversion, and provides information about how the flux evolves over the course of the
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year and about the various sources of CO2 flux. The appeal of the constrained least-
squares approach is its simplicity. It takes the uncertainty provided with the two types of
estimates at face value, and the combined estimate properly weighs these uncertainties.
The imposed constraint arises naturally because both the inventory and inversion aim
to estimate the same CO2 flux using different but complementary methods.

We did consider other statistical approaches for combining these two sources of
information. We investigated a state-space formulation which accounted for the fact
that we have “observations” (actually model output) that occur at two different time
scales: weekly and annual. However, such an approach requires that we impose apriori
week-to-week state dynamics, and some concerns about the numerical stability of the
algorithm arose during initial investigations. Another approach we considered was
a constrained Bayesian model. However, a Bayesian formulation requires selection
of priors at some level, and one would need to carefully consider how priors on the
weekly and source fluxes would effectively weigh the two sources of information. The
advantage of the constrained least squares approach is that it did not require additional
apriori information.
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