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Abstract

Interannual variability in biosphere-atmosphere exchange of CO2 is driven by a diverse range of biotic and abiotic

factors. Replicating this variability thus represents the ‘acid test’ for terrestrial biosphere models. Although such

models are commonly used to project responses to both normal and anomalous variability in climate, they are rarely

tested explicitly against inter-annual variability in observations. Herein, using standardized data from the North

American Carbon Program, we assess the performance of 16 terrestrial biosphere models and 3 remote sensing prod-

ucts against long-term measurements of biosphere-atmosphere CO2 exchange made with eddy-covariance flux tow-

ers at 11 forested sites in North America. Instead of focusing on model-data agreement we take a systematic,

variability-oriented approach and show that although the models tend to reproduce the mean magnitude of the

observed annual flux variability, they fail to reproduce the timing. Large biases in modeled annual means are evident

for all models. Observed interannual variability is found to commonly be on the order of magnitude of the mean

fluxes. None of the models consistently reproduce observed interannual variability within measurement uncertainty.

Underrepresentation of variability in spring phenology, soil thaw and snowpack melting, and difficulties in repro-

ducing the lagged response to extreme climatic events are identified as systematic errors, common to all models

included in this study.
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Introduction

The terrestrial biosphere acts as a net sink for atmo-

spheric CO2, with global forests absorbing on average

4 Pg C yr�1 (Pan et al., 2011), which, excluding defores-

tation, offsets roughly half of all anthropogenic emis-

sions from fossil fuel burning and cement production

(Pan et al., 2011). Interannual variability in this sink is

often on the order of magnitude of the mean (e.g., Zeng

et al., 2005; Reichstein et al., 2007; a; Pan et al., 2011), and

drives interannual variability in the growth rate of atmo-

spheric CO2 (Bousquet et al., 2000; Knorr et al., 2007).

Carbon fluxes in forest ecosystems are tightly coupled to

climate (Richardson et al., 2007; Piao et al., 2008; Chen

et al., 2009; Dragoni et al., 2011), and anomalous climatic
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signals generally drive the observed variability in their

sink strength (Dunn et al., 2007; Desai, 2010; le Maire

et al., 2010). Such signals tend to affect photosynthesis

and respiration (the two processes which determine net

ecosystem carbon exchange) to different extents (Rich-

ardson et al., 2007; Luyssaert et al., 2007), and therefore

provide an excellent test-bed to assess the skill of terres-

trial biosphere models.

Terrestrial biosphere models are the primary tools

used for predicting the impact of climate variability on

terrestrial carbon fluxes. Built around the philosophy

that a blend of mechanistic and semi-empirical descrip-

tions can capture functional responses to environmen-

tal drivers, they have been used in conjunction with

remote sensing products (Zhao & Running, 2010) and

data mining tools (Papale & Valentini, 2003) to provide

regional and global estimates of terrestrial carbon

cycling (e.g., Friend, 2010; Beer et al., 2010). They are

also commonly used to quantify terrestrial responses to

climatic variability, including anomalies, and extreme

events (Ciais et al., 2005; Richardson et al., 2007; Vetter

et al., 2008; Zhao & Running, 2010). Future model pro-

jections of the response of terrestrial carbon cycling to

climate change (Heimann & Reichstein, 2008) are neces-

sary to inform policy (IPCC, 2007), although current

models show very divergent sensitivity to long-term

changes in climate (Friedlingstein et al., 2006).

Biogeochemical models are often shown to capture

diel and seasonal dynamics reasonably well (e.g.,

Braswell et al., 2005). This is not surprising, given the

pronounced diurnal and seasonal cycles of climatic

drivers. Over yearly and longer time scales, however,

studies show poor model performance at reproducing

gross fluxes and carbon budgets (e.g., Hanson et al.,

2004; Braswell et al., 2005; Siqueira et al., 2006; Richard-

son et al., 2007; Urbanski et al., 2007). Such comparison

studies are typically restricted to a limited number of

models and sites, and a relatively short time series

length. Nonetheless, the results suggest that although

the response of terrestrial ecosystems to mean climatic

drivers is relatively well captured, sensitivity to the

impact of variability in climatic drivers may not be,

leading to the accumulation of high frequency model

error (e.g., Dietze et al., 2012) over longer time scales

(Schwalm et al., 2010). No study, however, has yet iden-

tified systematic errors in model sensitivity to climatic

variability.

In this analysis, we use 16 terrestrial biosphere mod-

els and 3 remote sensing products, along with eddy-

covariance data from a range of sites included in the

North American Carbon Program interim site synthe-

sis, to assess model ability to reproduce observed vari-

ability in carbon fluxes. We examine the frequency

distribution of temporal anomalies in net ecosystem

exchange (NEE), gross primary productivity (GPP),

and ecosystem respiration (RE), for two plant func-

tional types. We first assess individual model perfor-

mance on an annual/interannual scale. As interannual

variability can be driven by ‘critical’ periods within a

year (le Maire et al., 2010), we examine monthly

systematic model errors (errors consistent across all

models and sites). By using data from sites with a

regionally coherent anomalous year, we then assess

the possible role of extreme within-year climatic

events and lagged effects on model performance for

interannual variability in terrestrial carbon cycling.

Methods

All models and data used were obtained through the North

American Carbon Program (NACP) (http://www.nacarbon.

org/nacp/). To allow for an ensemble approach and reduce

the potential for spurious variability, we selected only sites

with at least 5 years of data, from plant functional types that

were represented by at least three such sites. This resulted in a

total of 11 forested sites distributed through North America

(Table 1). Of those, six were deciduous broadleaf, and five

evergreen needleleaf. This gave a total of 91 site-years for the

analysis.

Eddy-covariance flux data (produced by AmeriFlux and

Fluxnet-Canada investigators) from the 11 selected sites was

processed according to a common protocol from the NACP

site level interim synthesis (http://www.nacarbon.org/nacp/).

The observed NEE were corrected for storage, despiked (i.e.,

outlying values removed), and filtered to remove conditions

of low turbulence (friction velocity filtered). Flux error esti-

mates were calculated (Barr et al., 2009) by combining random

uncertainty (calculated following Richardson & Hollinger

(2007)) and uncertainty due to the selection of the friction

velocity threshold (Barr et al., 2009). Observed monthly and

annual NEE values were then calculated using gap-filled data

from each site (Barr et al., 2009). The gap-filled NEE values

were also partitioned to gross ecosystem photosynthesis

(GPP) and ecosystem respiration (RE). Multiple approaches

were used to quantify additional uncertainty introduced by

the partitioning (Desai, 2010; Barr et al., 2009).

Gaps in the meteorological forcing data occurred due to

instrument failure or quality control. Such gaps were filled

using the nearest available climate station in the National Cli-

matic Data Center’s Global Surface Summary of the Day

(NCDC-GSOD) database. Gaps at sites where no such data

were available were filled using DAYMET (Thornton et al.,

1997). Daily NCDC-GSOD and DAYMET data were temporar-

ily downscaled to hourly or half-hourly values (see Riccuito

et al., 2009 for details) (http://nacp.ornl.gov/docs/Site_

Synthesis_Protocol_v7.pdf).

Sixteen terrestrial biosphere models (Table 2) were run at

the sites for the period of available measurements (Table 1).

The terrestrial biosphere models simulated carbon cycling

with process-based formulations of varying detail for the

component carbon fluxes of photosynthesis and respiration.
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Simulated NEE was based on model specific runs using gap

filled observed weather at each site and locally observed val-

ues of soil texture according to a standard protocol (Riccuito

et al., 2009). Each model used species or plant functional type

specific parameterizations as defined by the individual model

teams, with the exception of LoTEC where parameters were

optimized using data assimilation (Riccuito et al., 2008). Three

remote sensing products of terrestrial gross primary produc-

tivity (MODISc5 (Running et al., 2004), MODISc5.1 (Zhao

et al., 2005), BESS (Ryu et al., 2011)), not included in the North

American Carbon Program, were also used to provide annual

estimates of GPP for each site.

To assess interannual variability, we normalized the mea-

sured/modeled values of NEE, GPP, and RE by subtracting

the long-term calendar year measured/modeled mean for

each site from individual site-year flux values, giving Fobs and

Fsim for each flux and year. By comparing the long-term calen-

dar year mean of measured and modeled fluxes, we also iden-

tified biases in model estimates of NEE, GPP and RE. Model-

data agreement for interannual variability in annual flux sums

was assessed in terms of the normalized root mean squared

error (NRMSE) and the v2 statistic.
The NRMSE is the root mean square error of model-data

mismatch normalized by the magnitude of observed variabil-

ity at each site:

NRMSEijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
lðFobs � FsimÞ2

q
rðFobsÞ ð1Þ

where F represents the observed (obs) or modeled (sim) value

of a particular flux, i (NEE, GPP, or RE), for a particular year,

l. Note that each flux here is represented as the interannual

variability (Fobs and Fsim), not the mean flux. r(Fobs) is the

standard deviation of observed interannual variability at site

k. NRMSE values are calculated for each model j at site k. The

NRMSE thus reports the mean difference between the simu-

lated and observed flux, relative to the variability in the

observed flux.

The v2 statistic complements the NRMSE by incorporating

measurement error. Here it is calculated for each model and

PFT as the squared residual between paired model and data

points for each flux (after normalization to the long-term mean

as described above), relative to the observational error:

v2ijk ¼
1

n

X
ijkl

Fobs � Fsim
2dðFobsÞ

� �2
ð2Þ

where d(Fobs) is uncertainty related to the annual observed

value of that flux, 2 normalizes the uncertainty in the observed

flux to correspond to a 95% confidence interval. A v2 value of

less than one indicates that the model agrees with the data rel-

ative to data uncertainty. That is interannual variability for a

model with a v2 value of less than one will always fall within

one standard deviation of data error. Above one, the v2 scales
model error relative to observation uncertainty.

Interannual variability in observed fluxes commonly stems

from specific, short-lived, periods of anomalous fluxes within

the year (Krishnan et al., 2008, 2009; Chen et al., 2009; le Maire

et al., 2010). We therefore also assessed model performance for

variability on a monthly scale. The variability of monthly

fluxes between years was calculated in the same way as

annual variability, as the difference between the observed or

modeled monthly value and the associated long-term mean

for the month in question.

By differencing the observed and predicted monthly

variability (herein termed variance residuals) specific periods

during the year at which the models under- or over-repre-

sent the observed monthly variability can be identified. We

define periods of systematic model error (statistically

common to all models) as times when all models show the

same-signed bias in variance residuals with 95% confidence.

We also assess persistent biases, which are mean biases of

more than 1 month in duration that are not necessarily

systematic.

Extreme climatic events, detectable as regionally coherent

deviations outside the normal range of variability, provide a

strong test of model performance. We identified one such

event in our database. At three sites in mid-western Canada,

mean spring monthly temperatures in 2002 were between 8

and 10 °C below the long-term mean. We used this event to

assess model skill and to identify systematic model error.

Results

Biases and the magnitude of variability

In order to quantify interannual variability, we normal-

ized all models and data by subtracting respective

mean annual totals from individual annual totals. This

process identified considerable biases in model esti-

mates of all total annual fluxes at all sites (Fig. 1). In

particular, biases in annual NEE were commonly of

similar magnitude to mean observed annual NEE

fluxes. The majority of models were biased toward

underestimating ecosystem carbon uptake for both

deciduous and evergreen sites (Fig. 1). Note that biases

herein are reported relative to the observed mean NEE

for each site, and therefore have the potential to be par-

ticularly larger for sites with low mean annual NEE.

See Table 1 for per-site mean annual NEE values.

The magnitude of modeled interannual variability in

each annual flux was on average of the same order of

that observed (Fig. 2). A large range in model perfor-

mance was evident (Table 3), but in general, the models

proved ‘flexible’ enough to reproduce the observed

range of variability. Observed interannual variability in

NEE for deciduous broadleaved forests was twice that

of evergreen needle-leaved forests, a distinction only

reproduced by six of the included models. The magni-

tude of interannual variability in both GPP and RE was

greater (55%, 23%) in deciduous broadleaved forests

than in evergreen needleleaved forests. The remote

sensing products, however, consistently predicted

higher GPP variability in evergreen than in deciduous

forests.
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Fig. 1 Mean model bias (Modeled-Measured, gC m�2 yr�1) over all years when compared to annual gap-filled observations of net eco-

system exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE). Results are grouped by two plant func-

tional types (EVG: Evergreen needleleaf forest; DBF: Deciduous broadleaf forest). The right panel is the normalized frequency

distribution of model biases grouped by plant functional type, showing the distribution of values in the bar charts on the left, reported

as a total bias for NEE, and a percentage of the annual total ([Modeled-Measured]/Measured) for GPP and RE. X-axis ranges are trun-

cated to represent only observed range of biases.

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 1971–1987
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Statistical performance of models on an interannual scale

Although the mean magnitude of model variability on

the interannual scale was similar to the mean

observed magnitude of variability (Fig. 2), all models

fell outside the data error of the observed for individ-

ual site-years (>1 v2, Fig. 3, S1). This means that the

general magnitude of interannual variability was well

reproduced, but not the timing. Interannual variability

in the annual net ecosystem exchange of evergreen

forests was better simulated on average than decidu-

ous forests (Fig. 3). A larger range of model perfor-

mance was observed for variability in annual GPP

than that of RE. Our results suggest that on average

the inability of models to match the timing of

observed variability in GPP is the main cause of errors

in the simulation of interannual variability in NEE,

although this is very model-dependent (Fig. 3). The

Fig. 2 The distribution of the magnitude of interannual variability (IAV) in annual totals of net ecosystem exchange (NEE), gross pri-

mary production (GPP), and ecosystem respiration (RE), over all sites for each model (gray lines) and the data (black line). See Table 3

for individual model values.

Table 3 Mean standard deviation of observed and modeled interannual variability for net ecosystem exchange (NEE), gross pri-

mary productivity (GPP) and ecosystem respiration (RE). Sites are grouped as deciduous broadleaved forest or evergreen needle-

leaved forest. Mean error of observed annual sums is also given for reference (in brackets). IAV: Interannual variability. Model

codes, given in brackets, are those used in Fig. 3

NEE GPP RE

DBF EVG DBF EVG DBF EVG

Observed IAV 85.53 44.49 115.05 74.30 91.56 74.32

Annual error (24.73) (17.12) (47.73) (24.54) (50.89) (37.50)

Models

BEPS (A) 213.54 40.36 110.54 69.16 234.33 85.04

Biome-BGC (B) 59.66 77.99 115.54 129.05 103.42 78.51

CanIBIS (C) 57.70 71.36 91.42 78.94 66.11 87.81

CNCLASS (D) 76.98 31.34 55.87 55.84 68.36 39.41

DLEM (E) 81.57 39.28 202.73 81.54 224.81 59.75

EDLUEEDCM (F) 169.20 65.57 240.33 93.72 103.86 43.23

ECOSYS (G) 47.79 59.43 110.59 64.85 86.59 64.58

ED2 (H) 134.66 17.69 156.14 23.85 54.08 14.79

ISAM (I) 178.31 98.10

LoTEC-DA (J) 88.26 92.03 121.13 56.05 57.77 103.90

LPJml (K) 72.97 104.96 127.76 145.35 86.87 93.58

ORCHIDEE (L) 93.58 26.33 175.23 63.33 113.73 47.96

SiB (M) 0.28 0.54 33.23 32.87 33.14 32.90

SiBCASA (N) 37.93 38.81 54.86 40.53 65.39 56.86

SSIB2 (O) 93.55 53.50 74.59 66.23 124.01 95.89

TECO (P) 64.32 38.87 94.41 57.15 121.13 54.89

BESS (Q) 104.32 178.26

MODISc5 (R) 82.17 136.14

MODISc5.1 (S) 48.92 52.06

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 1971–1987
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MODISc5 remote sensing product performed worse

than the average model (Fig. 3, Fig S2). The MO-

DISc5.1 data product proved to be a large improve-

ment over the MODISc5 GPP product. The BESS

remote sensing product, a process-based model inter-

pretation of remotely sensed data (Ryu et al., 2011),

performed better than either MODIS product for

deciduous forests, although that was not the case for

evergreens. Although process-based models of differ-

ent types were represented (e.g., light use efficiency

vs. enzyme kinetic model for GPP, Table 2) no model

characteristic performed statistically better than any

other (data not shown). This could be due to the lim-

ited number of models with particular characteristics.

Variability within the year

The models showed persistent systematic biases (see

definition in Methods section) for monthly flux variabil-

ity. In deciduous forests, models consistently underesti-

mated monthly variability in NEE throughout spring

(May and June) (Fig. 4). Model underestimation of vari-

ability in deciduous spring NEE fluxes was mostly due

to underrepresentation of variability in spring GPP

(Fig. 4). A smaller peak in the deciduous GPP variance

residuals (predicted monthly variability – observed

monthly variability) was also evident in September and

October. Variability in deciduous RE showed no bias

that was consistent across all models.

Systematic underrepresentation of monthly variabil-

ity during May was also evident for evergreen forests

(Fig. 4). Here, however, model error for NEE was dom-

inated by the lack of variability in modeled RE during

spring. Although evergreen forests do not exhibit the

marked phenological transitions observed in deciduous

forests, all evergreen forests included in this study

maintain a large snowpack throughout winter. Persis-

tent, non-systematic biases were evidenced throughout

the year, in particular an overestimation of winter

variability in evergreen NEE and GPP, and a persistent

Fig. 3 Statistical comparison (on a log-log scale) of model performance (normalized root mean square error vs. v2 statistic) for interan-
nual variability (IAV) in annual totals of net ecosystem exchange (NEE), gross primary productivity (GPP) and ecosystem respiration

(RE) for the two plant functional types (DBF (green): Deciduous broadleaved forests; EVG (blue): Evergreen needleleaf forests). See

supplementary material for graphs with error bars (Fig. S1, S2).

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 1971–1987
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underestimation of variability in evergreen RE during

the summer.

Response to anomalous climate forcing

Three sites (CA-Ojp, CA-Obs, CA-Oas; see site descrip-

tion Table 1) experienced a regionally coherent extreme

climatic event during 2002, where monthly mean tem-

peratures were between 8 (CA-Ojp, CA-Obs) and 10 °C

(CA-Oas) below the long-term mean. The anomaly lar-

gely affected canopy GPP at all three sites, and to a les-

ser extent RE (Fig. 5). At CA-Ojp and CA-Obs,

anomalously low temperatures during the month of

April lowered observed GPP by more than twice the

normal range of variability for that month (Fig. 5). The

models accurately captured the drop in productivity,

with the mean of all model projections capturing both

the sign and the magnitude of the April GPP anomaly

Fig. 4 Residuals (predicted-observed) of monthly variability in net ecosystem exchange (NEE), gross primary productivity (GPP), and

ecosystem respiration (RE). Positive values indicate a higher variability in the observations than in a model. The mean model-data

residuals are presented as a dashed line. The gray area represents the standard deviation about the mean. Values represent averages

over all sites for each plant functional type, and all sites taken together. Model codes – A: BEPS, B: Biome-BGC, C: CanIBIS, D:

CNCLASS, E: DLEM, F: EDLUEEDCM, G: ECOSYS, H: ED2, I: ISAM, J: LoTEC-DA, K: LPJml, L: ORCHIDEE, M: SiB, N: SiBCASA, O:

SSiB2, P: TECO, Q: BESS, R: MODISc5, S: MODISc5.1, X: Mean

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 1971–1987
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at both sites. The temperature anomaly was observed at

CA-Oas 1 month later, and again the models accurately

reproduced the observed magnitude in anomalous

GPP. During the following May, June, and July,

observed temperature remained colder than normal but

returned to within the normal range of variability for

the three sites. Observed GPP, however, remained

anomalously low during those months and did not

return to within the normal range of variability until

July at each site. This lagged effect between anomalous

climate forcing and resulting fluxes was not well

reproduced by the models. At CA-Obs, all models

returned to within the normal range of GPP variability

in the month directly following the temperature

Fig. 5 Monthly modelled and observed anomalies (mean model: green dashed line; standard deviation of models: green shaded area;

observed: solid black line) in gross primary production (GPP), ecosystem respiration (RE), and net ecosystem exchange (NEE) for the

year 2002 at three sites (Ca-Ojp, Ca-Obs, Ca-Oas) which exhibit a regionally coherent anomaly in that year. The standard deviation of

normal observed monthly variability is presented as the gray area with dark gray columns. The duration of the anomalous temperature

event is shown in the crosshatched gray area for each site.

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 1971–1987
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anomaly. The same behavior was apparent at CA-Ojp

and CA-Oas, although the average model GPP esti-

mates remained just outside the normal range of vari-

ability due to persistent low temperatures. The

extended period of low productivity in CA-Oas may be

in part also due to consistently low precipitation during

the year.

A similar, although smaller anomaly pattern was

observable for RE (Fig. 5). Low spring temperatures

caused a prolonged anomaly of low ecosystem respira-

tion. The models tended to overestimate the reduction

in RE as a result of the colder temperatures. After the

initial anomaly, RE as estimated by eddy-covariance

measurements took a few months to return to within

the normal range of variability. Modeled RE quickly

returned to ‘normal’ at CA-Ojp and CA-Obs. Temporal

dynamics at CA-Oas differed from those of the other

two sites due to the additional pressure of persistently

low temperatures and precipitation during the year.

Discussion

This analysis has shown that, although capable of

reproducing the magnitude of interannual variability,

terrestrial biosphere models are not consistent with the

timing of observations of interannual variability in sur-

face-atmosphere exchanges of CO2 at mid-latitude for-

ests over North America. By examining interannual

variability in measured and modeled monthly fluxes,

we show that all the models used for the NACP interim

site synthesis systematically fail to reproduce observed

variability during spring. Underestimation of spring

variability is largest for GPP in deciduous forests, and

RE for evergreens, suggesting different processes may

be responsible for plant functional type specific model

error.

It has been shown that terrestrial biosphere models

are typically unable to adequately explain the observed

interannual variability in deciduous canopy phenology

(Richardson et al., 2012), and that variability in spring

GPP often drives observed interannual variability in

net ecosystem exchange (Krishnan et al., 2008, 2009).

Here we show that this is a systematic cause of the low

agreement between modeled and observed interannual

variability in terrestrial carbon fluxes.

In a similar fashion, it has been shown that the cur-

rent available models of snow pack dynamics perform

poorly for both spatial and interannual variability. Rut-

ter et al. (2009) tested 33 models of snowpack dynamics

across a range of sites, and found that although a model

could perform well when tuned to a particular site-

year, this did not transfer to good performance for

other years at the same site, or other sites. Interactions

between snowmelt, soil thaw and water table depth are

known to directly affect interannual variability in NEE

(Goulden et al., 1998; Dunn et al., 2007; Hu et al., 2010).

Results here suggest that this may be a direct system-

atic contributor to the low agreement between observed

and modeled interannual variability in net ecosystem

carbon exchange, in particular for evergreen sites.

These results do not imply, however, that a lack of phe-

nological variability in canopy or soil dynamics are nec-

essarily the main culprits for the lack of agreement

between the observations and output from any one

model, as individual models showed large persistent

biases at other times of the year (Fig. 3).

The remote sensing products performed comparably

to the average process-based model when assessed

against interannual variability in GPP. The MODISc5.1

data set is a post-processed version of the MODISc5 data

set where corrections are made for poor quality driver

data (Zhao et al., 2005). The remote sensing products,

which are themselves models, are driven by a global

daily meteorological reanalysis dataset not site-specific

meteorology and the uncertainties in the meteorological

reanalysis can introduce biases in GPP estimates (Zhao

et al., 2006). Although estimates of GPP based on remote

sensing have been used to evaluate process-based

models (e.g., Poulter et al., 2009), results herein suggest

that estimates of interannual variability from both

approaches are subject to similar magnitudes of error.

Although there was a general tendency for the mod-

els to persistently underestimate flux variability in

summer, it should be noted that the flux data are sub-

ject to random error roughly in proportion to the size of

the flux (Richardson & Hollinger, 2007; Richardson

et al., 2008). Even if the model were perfect, modeled

variability should be smaller than that observed. Car-

bon fluxes are typically higher in the summer, and sub-

ject to larger uncertainty. The apparent higher

variability in the data during summer could therefore

be due to random errors in the flux measurements

generating larger variability in monthly totals.

The analysis of model responses to the regionally

coherent climatic anomaly of spring 2002 suggests that

models have the potential to correctly reproduce the

magnitude of instantaneous biological response to

climate anomalies (Desai, 2010). Although the models

accurately captured the direct effect of an isolated

climate extreme, the models included here failed to

accurately reproduce lagged effects of climate anoma-

lies on both gross primary production and ecosystem

respiration. Lagged effects of climate variability on eco-

system function have previously been reported (Gough

et al., 2009), and our results suggest that such lagged

effects are not well incorporated into models. The nat-

ure of such lagged effects depends on the type of cli-

matic anomaly. Spring frosts (Gu et al., 2008; Marino
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et al., 2011), for example, are known to directly effect

canopy structure, an aspect not currently accounted for

in models. The affects of other disturbances, such as ice

storms, strong winds and insect outbreaks are known to

be poorly represented by models (Liu et al., 2011) and

affect long-term carbon dynamics. Lagged effects unre-

lated to disturbances can be caused by changes in nutri-

ent cycling (Richardson et al., 2009) or changes in the

size of carbon pools such as litter (Rocha et al., 2008), or

non-structural carbohydrates (Gough et al., 2009) due to

climatic conditions in previous years. Model aspects

related to lagged and cumulative effects can be

improved through direct comparisons with observa-

tions (e.g., Keenan et al., 2009), although many related

issues remain (Liu et al., 2011). Although lagged effects

are apparent at the three sites showing a coherent regio-

nal extreme event, we did not detect similar lagged

events for other climatic anomalies in the database. This

is likely due to two confounding effects: that smaller

anomalous climate signals do not produce lagged (on

monthly scales) ecosystem effects, and that biotic effects

could play a role in driving some of the interannual

variability in observed fluxes (Richardson et al., 2007).

Open questions remain as to the proportion of interan-

nual variability in land-atmosphere carbon exchange that

is directly explainable by variability in climate (Hui et al.,

2003; Polley et al., 2010; Richardson et al., 2007). Controls

on interannual variability can also be manifest in the

form of functional changes in the ecosystem, or lagged

effects on pool sizes and dynamics. By contrasting the in-

terannual performance of a simple empirical model with

fixed parameters against the same model with interan-

nually varying parameters, Richardson et al. (2007)

reported that forest functional change at a spruce forest

was responsible for 55% of interannual variations in

land-atmosphere CO2 exchange. i.e., 45% of the observed

variability was not explainable by the direct impacts of

climate. Polley et al. (2010) used a similar approach to

determine a significant contribution of ecosystem

functional change to interannual variability in grass-

lands. Using an optimized process-based model, how-

ever, Desai (2010) found that 81% of interannual

variability in annual CO2 exchange could be explained

by variability in climate for five mature hardwood

forests, a value that likely underestimates model perfor-

mance given that it does not account for observational

error. This result supports multi-site synthesis efforts

that show that ~79% of interannual variability for mid-

altitude deciduous broadleaved forests can be explained

by variability in temperature (Yuan et al., 2009). Clearly

a detailed assessment of the relative roles of climate and

functional change on the interannual variability of CO2

flux across a wide range of sites and climate zones is

needed.

We could not distinguish any model structure or

characteristic (see Table 2) that tended to give a better

model performance. All models are subject to errors

resulting from both parameter choice (parameter mis-

specification) and model structure (process mis-repre-

sentation) (Keenan et al., 2011). The fact that no model

structure proved consistently better suggests that

parameter error was excessively large. In future efforts,

model-data fusion techniques (Wang et al., 2009;

Keenan et al., 2011) could aid in reducing the relative

magnitude of parameter errors, thus allowing for a more

rigorous assessment of model structural differences.

Our estimates of the magnitude of observed interan-

nual variability in land-atmosphere CO2 exchange

(DBF: ~85 gC m�2; EVG: 44 gC m�2, Table 3) are

roughly 50% and 33% of the mean flux, respectively.

Given that this represents one standard deviation about

the mean, variability in ecosystem carbon uptake is

commonly on the order of magnitude of the mean. This

supports previous results from single sites (Richardson

et al., 2007; a), and modeling studies (Zeng et al., 2005),

across the range of sites included herein. Variability in

GPP has been found to be the main contributor to vari-

ability in NEE for a variety of terrestrial ecosystems

(Luyssaert et al., 2007). Here, we show that for decidu-

ous forests, the interannual variability in GPP is on

average 26% greater than that of RE (Table 3).

Although on average both GPP and RE show a similar

magnitude of variability at the evergreen needleleaf for-

est sites, four of the six evergreen sites had higher vari-

ability in GPP. This suggests that variability in GPP

dominates variability in NEE in mid-latitude forests,

though this rule is not applicable to all sites included

herein.

Using 91 site-years at 11 long-term eddy-covariance

forest sites, we show that terrestrial biosphere models

have difficulty in simulating land-atmosphere CO2

exchange at annual and interannual time scales, with

the potential for large biases on the interannual scale,

and incorrect simulation of the timing of interannual

variability. Instead of focusing on model-data agree-

ment, we present a variability-oriented approach of

diagnosing systematic and persistent model-data dis-

agreement. Given that studies of the impact of climate

variability on terrestrial fluxes are likely to reveal a

more informative picture of biosphere-atmosphere

interactions (le Maire et al., 2010), such a variability ori-

entated approach should greatly aid modeling teams in

future model assessment and development. Our results

highlight three potential mechanisms - spring canopy

phenology, soil thaw and the melting of the snow pack,

and lagged effects - common to all models included in

the study, which contribute to the low agreement

between the models and the observed interannual vari-
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ability in land-atmosphere CO2 exchange. Addressing

these issues in future model efforts will be the first step

toward improving the sensitivity of models to climatic

variability on interannual time scales.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Model normalized root mean square error (NRMSE) when compared to inter-annual variability (IAV) of net ecosystem
exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE), as a percentage of the annual total, grouped by
two plant functional types (DBF: Deciduous broadleaf forest; EVG: Evergreen needleleaf forest). Error bars represent the standard
deviation from the mean.
Figure S2. v2 statistic for modeled vs. observed inter-annual variability (IAV) of net ecosystem exchange (NEE), gross primary pro-
ductivity (GPP), and ecosystem respiration (RE), grouped by two plant functional types (DBF: Deciduous broadleaf forest; EVG:
Evergreen needleleaf forest). Error bars represent the standard deviation from the mean. The dashed line indicates a v2 value of 1,
below which modeled variability is deemed to fall within the data error of observed variability.
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