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[1] We use an ensemble-based data assimilation method, known as the maximum
likelihood ensemble filter (MLEF), which has been coupled with a global atmospheric
transport model to estimate slowly varying biases of carbon surface fluxes. Carbon fluxes
for this test consist of hourly gross primary production and ecosystem, respiration over
land, and air-sea gas exchange. Persistent multiplicative biases intended to represent
incorrectly simulated biogeochemical or land-management processes such as stand age,
soil fertility, or coarse woody debris were estimated for 1 year at 10� longitude by 6� latitude
spatial resolution and with an 8-week time window. We tested the model using a
pseudodata experiment with an existing observation network that includes flasks, aircraft
profiles, and continuous measurements. Because of the underconstrained nature of the
problem, strong covariance smoothing was applied in the first data assimilation cycle, and
localization schemes have been introduced. Error covariance was propagated in
subsequent cycles. The coupled model satisfactorily recovered the land biases in densely
observed areas. Ocean biases, however, were poorly constrained by the atmospheric
observations. Unlike in batch mode inversions, the MLEF has a capability of assimilating
large observation vectors and hence is suitable for assimilating hourly continuous
observations and satellite observations in the future. Uncertainty was reduced further in
our pseudodata experiment than by previous batch methods because of the ability to
assimilate a large observation vector. Propagation of spatial covariance and dynamic
localization avoid the need for prescribed spatial patterns of error covariance centered at
observation sites as in previous grid-scale methods.
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1. Introduction

[2] The CO2 concentration in the atmosphere is increas-
ing every year because of anthropogenic activities. About
half of the CO2 released to the atmosphere is absorbed by
various land and ocean processes, but spatial and temporal
variability of these carbon sinks is not well understood
[Denman et al., 2007]. When making policy decisions about
CO2 emissions, it is important to know the spatial distribu-
tion of these carbon sinks, how they function, and for how
long they will keep operating.
[3] Inverse modeling has been widely used to locate the

spatial distribution of the carbon sink by using observed CO2

concentrations in the atmosphere [e.g., Gurney et al., 2002;
Rödenbeck et al., 2003; Michalak et al., 2004; Bruhwiler
et al., 2005; Peters et al., 2005; Baker et al., 2006]. The
outcome of the inversions varies because of differences in the
transport and the spatial representation of the prior fluxes. It
depends strongly on the prescribed prior and observation
error covariance matrices, which define weighting between
the priors and the data for these under-determined problems.
[4] Gurney et al. [2002] introduced a model intercom-

parison experiment, which is widely known as TransCom3,
with 16 global atmospheric transport models and model
variants. They found a terrestrial carbon sink that is distrib-
uted almost evenly among the northern hemispheric con-
tinents. The magnitude of the sink was sensitive to transport
differences among models. They also found that the CO2

uptake in the southern ocean was less than calculated from
ocean measurements, and this result was not sensitive to the
transport models. Early inversions were carried out by
dividing the globe into several large regions and by solving
for fluxes in monthly or annual time scales. Optimization
was done by estimating a single vector of unknowns. This
technique is known as a ‘‘batch mode’’ inversion. For

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D20110, doi:10.1029/2007JD009679, 2008
Click
Here

for

Full
Article

1Department of Atmospheric Science, Colorado State University, Fort
Collins, Colorado, USA.

2Cooperative Institute for Research in the Atmosphere, Colorado State
University, Fort Collins, Colorado, USA.

3NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
4Department of Earth and Atmospheric Science, Purdue University,

West Lafayette, Indiana, USA.

Copyright 2008 by the American Geophysical Union.
0148-0227/08/2007JD009679$09.00

D20110 1 of 19

http://dx.doi.org/10.1029/2007JD009679


example, in the TransCom3 experiment, the globe was
divided into 22 regions, which consisted of 11 land regions
and 11 ocean regions [Gurney et al., 2002]. Large regions
were used because of the sparseness of the CO2 observation
sites. One advantage of this technique is that the problem is
mathematically over-determined, because the number of
unknowns (number of regions times number of time levels)
is much less than the available observed information.
However, a recent study by Bruhwiler et al. [2007] indicates
that some regions like South America and Africa are poorly
constrained by the current observation network because of
the weaker signal from these regions. The batch problem is
computationally efficient, even for monthly estimation over
many years. However, lumping small basis regions into
larger combined regions may lead to aggregation errors
[Kaminski et al., 2001; Engelen et al., 2002], because
observed CO2 fields are sensitive to the distribution of
sources and sinks within large basis regions. Batch inver-
sion for large regions cannot adjust these finer scale patterns
of fluxes, so that errors in subregional spatial or temporal
patterns are unavoidably aliased into errors in the mean
fluxes. Usually the sampling sites are biased toward the
fluxes from nearby grid cells and hence cannot properly
represent heterogeneous larger regions. Also in the Trans-
com3 experiment, the spatial distributions of fluxes within
the large source regions were demarcated by hard bound-
aries, which do not exist in the real situation.
[5] In a Bayesian framework for data assimilation, we

optimize a cost function, which consists of two components.
Mathematically we define the cost function as

C bð Þ ¼ 1

2
y� H bð Þ½ �TR�1 y� H bð Þ½ � þ 1

2
b � bb½ �TP�1

f b � bb½ �;

ð1Þ

where y is a vector of observations, H is an observation
operator, b is a vector of unknowns (the state vector we are
solving for),bb is the prescribed prior (background) estimate,
R is the observation error covariance matrix, and Pf is the
forecast (prior) error covariance matrix. The first term of the
cost function (equation (1)) controls the difference between
the observations and the predicted values. The second term
constrains the solution by an a priori (or ‘‘background’’) flux
distribution, which is necessary to stabilize the solution in an
under-constrained problem. From a statistical point of view,
the cost function is the kernel (core of the distribution that
depends on the variable b) of the posterior distribution. The
posterior distribution is defined as a product of the likelihood
function and the prior distribution. The two terms of the cost
function are the kernel of the likelihood function and the
kernel of the prior distribution, respectively. Here we find an
optimal solution for the variable b by maximizing the
posterior distribution. This corresponds to the minimizing
kernel of the posterior distribution or the cost function. A
solution which minimizes the above cost function can be
found assuming a linear observation operator (H) as

b̂ ¼ bb þ PHT HPHT þ R
� ��1

y�Hbbð Þ; ð2Þ

Pb̂ ¼ P � PHT HPHT þ R
� ��1

HP; ð3Þ

where b̂ is the posterior estimate of the state vector b and
b̂ is its corresponding posterior covariance [Tarantola,
1987].
[6] In large region inversions like the TransCom3 exper-

iment, it is assumed that grid points within a given region
are perfectly correlated in space with a constant flux value
over some period of time (e.g., monthly). In finer-scale
(grid-scale) inversions, if we were to assume that grid boxes
are uncorrelated, the number of unknowns becomes ex-
tremely large compared to the number of observations.
Hence the problem becomes under-determined, but can be
solved by the priors. The best practical approach to solving
the problem lies between these two extremes: perfectly
correlated larger regions and uncorrelated grid boxes. In a
grid-scale inversion, we find a solution, which lies in
between these two extremes, by correlating the grid cells.
The first grid-scale inversion of CO2 was introduced by
Kaminski et al. [1999]. They estimated a coarse grid of
fluxes at 8� latitude by 10� longitude in monthly time
scales. The problem was highly under-constrained and a
unique solution was found by gathering a priori information
on surface fluxes. Rödenbeck et al. [2003] performed a grid-
scale inversion accounting for the spatial covariance of flux
uncertainties. They assumed different de-correlation length
scales over the land and the ocean and monthly fluxes were
estimated on 8� latitude by 10� longitude spatial resolution
from monthly mean observations. Michalak et al. [2004]
developed a geostatistical approach, which avoids prescrib-
ing a priori fluxes. In their method, bb in equation (1) was
replaced by a trend term Xb. This modification to the cost
function allows one to include additional information such
as vegetation cover, leaf area index, and greenness fraction
etc. that varies with the mean behavior of the fluxes. For
example, if we assume that the mean behavior of ocean
fluxes differs from that of the land, it can be incorporated
into the trend term by simply including a variable, which
separates the two fluxes. This separation is usually done by
including an indicator variable that represents the land by 1
and the ocean by 0 or vise versa. They estimated the
parameters of the state covariance matrix, such as de-
correlation length scales and variances (land/ocean), as a
byproduct of the optimization scheme, rather than prescrib-
ing them.
[7] All of these methods utilize the batch mode or

synthesis inversion technique and they perform satisfacto-
rily with the existing observation network. Every year new
observation sites become available, many of which record
CO2 hourly rather than weekly. The observation vector will
be tremendously large when Orbiting Carbon Observatory
(OCO) data are available [Crisp and Johnson, 2005]. As
more observations become available, we will be able to
optimize the fluxes in much finer scales. However, batch
mode inversions are unwieldy in this case because of the
need to invert excessively large matrices. Finer-scale esti-
mation of surface sources and sinks is now becoming
feasible, but the computational burden and under-constrained
nature of the problem requires innovative assimilation
methods. Bruhwiler et al. [2005] introduced a fixed-lag
Kalman smoother to estimate fluxes. Their method steps
through the observations sequentially, which avoids the
difficulties of using large observation vectors as in the batch
mode inversion technique. However, this method requires
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the pre-calculation of observation operators, which is still
expensive in the case of assimilating hourly observations.
Further developing the fixed-lag Kalman smoother, Peters
et al. [2005] introduced an ensemble-based approach to
carbon inversions, in which the Kalman gain matrix was
approximated by using ensemble members. They used the
ensemble square root filter, which assimilates observations
serially (one at a time) [Whitaker and Hamill, 2002]. Serial
assimilation could be troublesome in carbon problems
because of the need for repeated integration of the transport
model. This could be computationally expensive with very
large observation vectors as in the case of a satellite
experiment. Baker et al. [2006] and Chevallier et al.
[2005] introduced variational data assimilation schemes to
atmospheric CO2 assimilation. Their methods also showed
promising results with large observation vectors such as
OCO data. However, the variational method requires the
calculation of backward-in-time transport, also known as
the model adjoint. Frequent improvements to the models
are introduced so that the computation and maintenance of
model adjoints, which is required in variational methods,
also becomes complicated and troublesome. For example,
in atmospheric transport models, reversing advection
schemes is fairly simple but reversing the convective
schemes can be rather difficult because of complicated
parameterization schemes with many logical branches.
Ensemble methods have the advantage that there is no
need to compute model adjoints. The computational cost of
both ensemble and variational methods are similar, but
ensemble methods are more efficient in a parallel comput-
ing environment.
[8] In this paper, we apply a new ensemble-based method

called the maximum likelihood ensemble filter (MLEF)
[Zupanski, 2005; Zupanski and Zupanski, 2006] to global
CO2 inversion. The MLEF has also been applied to regional
CO2 inversion [Zupanski et al., 2007a]. This regional-scale
study was focused on estimating the biases for GPP and
respiration in North America by assimilating continuous
CO2 observations from the WLEF tall tower and the ‘‘ring
of towers’’ in northern Wisconsin. They investigated the
model performance with a wide range of ensemble sizes and
found that a reasonable solution can be reached even with
small ensembles by applying covariance localization. For
very large ensemble sizes, localization was not essential. In
this study, we introduce a pseudodata experiment to test the
performance of the MLEF by assimilating currently avail-
able (flasks, continuous, and aircraft profiles) observation
sites on the global domain. We allow net surface fluxes of
CO2 to vary on an hourly basis, and solve for persistent
multiplicative biases of each component flux in each model
grid cell. We have assumed an idealized case in this
experiment such that the biases stay constant throughout
the year, corresponding to errors in slowly-varying biogeo-
chemical or land-management parameters such as forest
stand age, nitrogen deposition, or coarse woody debris
which are difficult to simulate accurately everywhere. In
reality, model biases may vary seasonally or in some other
time scale, but these variations are not considered in the
present study. The MLEF is feasible for applications with
very large observation vectors (e.g., satellite observations)
since no serial assimilation of observations is required and
hence can be a useful tool in future CO2 studies. Serial

processing of observations was introduced in ensemble
square root filter schemes for the purposes of covariance
localization [e.g., Whitaker and Hamill, 2002; Peters et al.,
2005]. In the MLEF, a different approach for covariance
localization is taken, so serial processing of observations is
not necessary.
[9] The remainder of this paper is organized as follows.

In section 2, we describe the inversion scheme we used in
this study. Section 3 presents the results along with a
discussion based on a pseudodata experiment. Finally,
section 4 includes the concluding remarks and future
directions of our work.

2. Method

[10] Evensen [1994] introduced the first ensemble-based
approach to the data assimilation literature. Since then
several versions have been introduced by improving the
original version [Houtekamer and Mitchell, 1998; Burgers
et al., 1998; Whitaker and Hamill, 2002; Zupanski, 2005].
The MLEF has been developed by incorporating ideas from
variational methods, iterated Kalman filters, and Ensemble
Transform Kalman Filter (ETKF). The cost function is
minimized numerically, which allows one to incorporate
nonlinear models if necessary. Unlike other ensemble-based
methods, the MLEF incorporates iterative minimization of a
non-linear cost function with advanced Hessian precondi-
tioning, which makes it more robust for non-linear processes.
The method is based on maximum likelihood (rather than
minimum variance) estimation and thus the optimal solution
is given by the mode (rather than the mean) of the posterior
distribution. As explained in the work of Fletcher and
Zupanski [2006] the maximum likelihood solution is robust
for non-Gaussian error distributions and extreme observa-
tions (outliers). Mathematical derivations in the study of
Fletcher and Zupanski indicate that, when using non-
Gaussian Probability Density Functions (PDFs), a different
cost function is obtained. Typically, non-Gaussian PDFs
(e.g., lognormal) result in more complicated cost functions
including extra non-linear terms, which require additional
minimization iterations in order to obtain a satisfactory
solution. We do not explore this capability of the MLEF
in this paper since our observation operator is linear and the
PDFs are close to Gaussian. The following section includes
a discussion of the assimilation scheme followed by a
description of the MLEF method.

2.1. Assimilation Scheme

[11] Previous studies of carbon flux estimation were
mostly focused on estimation of Net Ecosystem Exchange
(NEE). NEE estimation has been done on weekly, monthly,
or yearly time scales. However, much of the variation of
fluxes on land lies in sub-daily time scales, which are often
neglected. NEE is defined as the difference between two
component fluxes, ecosystem respiration and Gross Primary
Productivity (GPP). An annual sink at a given location may
occur either because of high GPP or low respiration.
Similarly, a source can occur with low GPP or high
respiration.
[12] In this study, we estimate GPP and respiration by

introducing unknown persistent multiplicative adjustments
(biases) to them. We solve for the biases by assuming that
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they are constant over longer time periods (in this example
8 weeks) compared to the component fluxes. By doing so,
we can allow high-frequency time variations in respiration
and photosynthesis (i.e., GPP) assuming that they are driven
by relatively well-understood and easily-modeled processes
[Zupanski et al., 2007a]. This assumption is valid for a
pseudodata experiment. However, for real data, any incor-
rect specification of temporal patterns of fluxes will be
aliased into a bias in the recovered ‘‘biases.’’
[13] Currently, it is difficult to differentiate these two flux

components from the observations. Nighttime concentra-
tions of CO2 over land are sensitive to respiration, but they
are rarely used in flux inversions because the transport
models cannot adequately simulate nocturnal boundary
layers. Other tracers such as Carbonyl Sulfide (COS)
[Montzka et al., 2007] that are sensitive only to GPP and
could be helpful in separating the component fluxes.
Further investigation is required in this area. A mesoscale
problem of bias estimation was discussed by Zupanski et al.
[2007a]. In the global-scale problem, however, we need to
consider ocean fluxes as well. The optimization problem
can be represented as solving for unknown multiplicative
biases:

F x; y; tð Þ ¼ bRESP x; yð ÞRESP x; y; tð Þ � bGPP x; yð ÞGPP x; y; tð Þ
þ bOcean x; yð ÞOcean x; y; tð Þ; ð4Þ

where x and y denote the spatial coordinates and t represents
the time, which is at hourly resolution. b’s represent
persistent multiplicative biases in the grid-scale component
fluxes. The rationale for equation (4) is as follows. A
persistent bias in photosynthesis might result (for example)
from underestimation of available nitrogen, forest manage-
ment, or agricultural land-use, whereas a persistent bias in
respiration might result from overestimation of soil carbon
or coarse woody debris. Sub-daily variations in the
simulated component fluxes respiration and GPP are
primarily controlled by the weather (especially changes in
radiation due to clouds and the diurnal cycle of solar
forcing), whereas seasonal changes are derived from
phenological calculations parameterized from satellite
imagery. Fine-scale spatial variations are driven by changes
in vegetation cover, soil texture, and soil moisture. In any
case, it is reasonable to assume that the biases bRESP and
bGPP vary much more slowly than the fluxes themselves in
longer time scales. Our method allows for respiration and
GPP to vary on hourly, synoptic, and seasonal time scales,
but assumes that biases in these fluxes persist for a period of
approximately 2 months. Since the current study is a
pseudodata experiment, we neglected the contribution from
fossil fuel burning.
[14] Hourly component fluxes (respiration and GPP) were

derived from the Simple Bioshere-version 3 (SiB3) model
(Denning et al. [1996]; Schaefer et al. [2002]; Baker et al.
[2003]; Baker et al. [2007], ORNL data set). Ocean fluxes
were considered [Takahashi et al., 2002] on a monthly time
scale. We interpolated mid monthly values to hourly time
resolution to be consistent with the land fluxes. Each flux is
prescribed on 10� longitude by 6� latitude spatial resolution
and hence the state vector has 1097 (265 land points � 2 +

567 ocean points) unknowns (degrees of freedom). We can
write the state vector (in equation (1)) as follows:

b ¼
bGPP

bRESP

bOcean

2
4

3
5
1097�1

ð5Þ

[15] Unlike in regional inversions, global inversions re-
quire a longer period of transport because of the scale of the
problem and sparseness of the observation network. Usual-
ly, a CO2 pulse from a given grid point has to travel over
several weeks to months in order to reach a far distant
observation site. Running large ensembles of months-long
forward transport calculations is the most computationally
intensive component of the data assimilation scheme.
Bruhwiler et al. [2005] showed that 4–6 months of trans-
port would effectively capture most of the signal from each
source region. Peters et al. [2005] investigated the sensi-
tivity of the flux estimates to the length of the assimilation
window, and found that an 8–10 week assimilation window
would reasonably recover the fluxes, according to their
assimilation scheme. Although some influence on very
distant observing stations is neglected by using such a short
assimilation window, the signals are diluted over time by
atmospheric dispersion. The added information from a
longer window is not worth the added computational cost.
In case of a densely observed system as in satellite data
assimilation, a much shorter window can be considered. In
NEE flux estimation, the window length would also control
the number of unknowns in the state vector, but this is not
the case in our bias inversion because the biases are
assumed to vary slowly and we assume that they are
constant over the window length. So, in this experiment,
the window length controls the duration of the biases. We
chose an eight-week window in our assimilation scheme.
Though we know that biases are slow varying compared to
the corresponding component fluxes, their actual persis-
tence is unknown. Thus in a real life experiment, the
window length would serve as an important parameter.
[16] In the first assimilation cycle, also known as a ‘‘cold

start’’, the forward transport calculation for each ensemble
member was started from a single 3-D CO2 field, which
was saved at the end of a three-year spin-up process (see
section 2.3). A background (or first guess) b (=1), as
described in section 2.7, along with the perturbed back-
ground vectors (ensemble members) was used to compute
the hourly CO2 fluxes using equation (4). Then each hourly
tracer was run through the transport model for 8 weeks (the
window length) to simulate CO2 at the observation sites.
The MLEF optimizes b by minimizing the distance between
the simulated and observed CO2 concentrations. During
each assimilation cycle, the optimized b was run through
the transport model and at the end of the cycle, the 3-D CO2

field was saved, which was then used to start the next cycle
(‘‘warm start’’). Similarly, 3-D CO2 fields for the ensemble
members were also saved, which were used as the starting
point for ensemble members in the warm start. Note that
unlike in other ensemble methods, in MLEF, analysis
perturbations (ensemble members) are propagated to the
next cycle through the forecast model so that a new drawing
of random perturbations was not required in the next cycle

D20110 LOKUPITIYA ET AL.: CARBON FLUX BIAS ESTIMATION

4 of 19

D20110



[Zupanski, 2005]. This process was followed for the remain-
ing cycles.
[17] Peters et al. [2005, 2007] estimated weekly net

carbon fluxes using a moving overlapping assimilation
window. Weekly fluxes were estimated repeatedly using
subsequent weeks of observations after allowing five weeks
of atmospheric transport to propagate information from
surface flux locations to relatively distant observation sites
in the model. The three-dimensional model state (CO2

distribution) was propagated between subsequent five-week
forward simulations initiated one week apart. This tech-
nique provided atmospheric ‘‘memory’’ of fluxes to smooth
the solution, avoiding unrealistic discontinuities in simulated
CO2 concentrations, which might result from sudden
changes in estimated fluxes from one assimilation interval
to the next. We have introduced an explicit temporal decom-
position of the flux optimization problem (equation (4)), by
which we separate large subdiurnal variations in net fluxes
driven by physical forcing from more subtle but persistent
multiplicative biases in each component flux because of
incorrect biogeochemical or land-management parameters.
Persistent grid-scale biases are estimated every eight weeks
using observations from the same period, which is suffi-
ciently long for the influence of surface fluxes to be ‘‘felt’’
across much of the observing network. The temporal
decomposition used here prevents CO2 discontinuities in
much the same way as the moving window used by Peters
et al. [2005, 2007], but avoids the need for computationally
inefficient overlapping transport integrations.

2.2. Observations

[18] We assimilated three types of pseudo-observations;
53 CMDL surface flask observations that are collected on
weekly basis, 5 aircraft profiles that are also collected on
weekly basis at different vertical levels, and 67 continuous

sites that are measured in-situ on an hourly basis (Note that
some continuous sites sample CO2 at several vertical
levels). For locations and names of the observation sites
see Table 1 and Figure 1. In this pseudodata experiment, we
assumed that each flask station sampled observations with
1 ppm (parts per million) uncertainty. The actual model-data
mismatch errors would be estimated for our transport model
in a real data experiment. At the continuous sites, uncertainty
is added according to the local time and station height as
given by Table 2. Higher uncertainties are given to nighttime
observations to account for the strong variations in the
nighttime CO2 due to variably stable nighttime boundary
layers that are difficult to simulate. Hence they have minimal
representation in the assimilation process. The observation
error, which is also known as model-data mismatch, corre-
sponds to the diagonal of the observation covariance matrix,
R. We usually assume that the observation stations are far
from each other so that the correlations among their errors
are negligible (off-diagonal elements of R are zero). How-
ever, model-data mismatches at continuous sites can be
correlated over time and may lead to non-zero off-diagonal
values in the matrix R. We do not address this issue in this
paper. Observation error consists of measuring instrument
error at the site, transport error, and the error due to scale
mismatch between the observations and the transport
model (the so-called representativeness error, e.g., Cohn
[1997] and Engelen et al. [2002]). The measurement errors
are very small compared to the model transport error.

2.3. Pseudodata

[19] This experiment was conducted with artificially
generated biases for GPP, respiration, and ocean fluxes.
They served as the ‘‘truth’’ we tried to estimate and were
generated as follows. First, each map of bias was created by
generating random numbers from Gaussian distributions;

Figure 1. A map of stations used in this study. Solid circles—aircraft profiles, open circles—continuous
sites, and plus sign—flask stations.
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Table 1. CO2 Measurement Sites Used in This Study

Code Name Latitude (deg) Longitude (deg) Altitude/Height (m)

Flasks
ALT Alert, Nunavut, Canada 82.45 �62.52 210
AMS Amsterdam Island, Indian ocean (France) �37.95 77.53 150
ASC Ascension Island, UK �7.92 �14.42 54
ASK Assekrem. Algeria 23.18 5.42 2728
AVI St. Croix, Virgin Islands, USA 17.75 �64.75 3
AZR Terceira Island, Azores, Portugal 38.77 �27.38 40
BAL Baltic Sea, Poland 55.50 16.67 28
BME St. Davis Head, Bermuda, UK 32.37 �64.65 30
BMW Tudor Hill, Bermuda, UK 32.27 �64.88 30
BRW Barrow, Alaska, USA 71.32 �156.60 11
BSC Black Sea, Constanta, Romania 44.17 28.68 3
CBA Cold Bay, Alaska, USA 55.20 �162.72 25
CGO Cape Grim, Tasmania, Australia �40.68 144.68 94
CHR Christmas Island, Republic of Kiribati 1.70 �157.17 3
CMO Cape Meares, Oregon, USA 45.48 �123.97 30
CRZ Crozet Island, France �46.45 51.85 120
EIC Easter Island, Chile �27.15 �109.45 50
GOZ Dwejra Point, Gozo, Malta 36.05 14.18 30
GMI Mariana Island, Guam 13.43 144.78 6
HBA Halley Station, Antarctica, UK �75.58 �26.50 33
HUN Hegyhatsal, Hungary 46.95 16.65 344
ICE Storhofdi, Vestmannaeyjar, Iceland 63.25 �20.15 127
ITN Grifton, North Carolina, USA 35.35 �77.38 60
IZO Tenerife, Canary Islands, Spain 28.30 �16.48 2360
KEY Key Biscayne, Florida, USA 25.67 �80.20 3
KUM Cape Kumukahi, Hawaii, USA 19.52 �154.82 3
KZD Sary Taukum, Kazakhstan 44.45 77.57 412
KZM Plateau Assy, Kazakhstan 43.25 77.88 2519
LEF Park Falls, Wisconsin, USA 45.93 �90.27 483
MBC Mould, Northwest Territories, Canada 76.25 �119.35 58
MHD Mace Head, County Galway, Ireland 53.33 �9.90 25
MID Sand Island, Midway, USA 28.22 �177.37 4
MLO Mauna Loa, Hawaii, USA 19.53 �155.58 3397
NMB Nambia �23.58 15.03 408
NWR Niwot Ridge, Colorado, USA 40.05 �105.58 3475
PSA Palmer Station, Antarctica, USA �64.92 �64.00 10
PTA Point Arena, California, USA 38.95 �123.73 17
RPB Ragged Point, Barbados 13.17 �59.43 45
SEY Mahe Island, Seychelles �4.67 55.17 3
SHM Shemya Island, Alaska, USA 52.72 174.10 40
SMO Tutuila, American Samoa �14.25 �170.57 42
SPO South Pole, Antarctica, USA �89.98 �24.80 2810
STC Ocean Station C, North Atlantic Ocean, USA �35.00 54.00 6
STM Ocean Station M, Norway 66.00 2.00 7
SUM Summit, Greenland 72.58 �38.48 3238
SYO Syowa Station, Antarctica, Japan �69.00 39.58 11
TAP Tae-ahn Peninsula, South Korea 36.73 126.13 20
TDF Tierra Del Fuego, La Redonda Island, Argentina �54.87 �68.48 20
UTA Wendover, Utah, USA 39.90 �113.72 1320
UUM Ulaan Uul, Mongolia 44.45 111.10 914
WIS Sede Boker, Negev Desert, Israel 31.13 34.88 400
WLG Mt. Waliguan, Peoples Republic of China 36.29 100.90 3810
ZEP Ny-Alesund, Svalbard, Norway and Sweden 78.90 11.88 475

Continuous Sites
ALT Alert, Nunavut, Canada 82.45 �62.52 210
AMT Argyle, Maine, USA 45.03 �68.68 159
ARM Atmospheric Radiation Measurement Site, Oklahoma, USA 36.78 �97.50 314
CBW 52.00 4.90 Multiple
CDL 53.87 �104.65 489
FRS 49.88 �81.57 210
HRV Harvard Forest, Massachusetts, USA 42.90 �72.30 340
HUN Hegyhatsal, Hungary 46.95 16.65 Multiple
LEF Park Falls, Wisconsin, USA 45.92 �90.27 Multiple
NGL 53.17 13.30 65
ORL 47.80 2.50 Multiple
PLR 45.93 7.70 3480
PLS 67.97 24.12 565
SGP Southern Great Plains, Oklahoma, USA 36.61 �97.49 60
SOBS Canada 53.98 �105.12 25
SSL 47.92 7.92 1205
WKT Moody, Texas, USA 31.32 �97.32 Multiple
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bGPP 	 N(1,0.32), bRESP 	 N(1,0.32), and bOcean 	
N(1,0.22). Finally, we introduced kernel smoothing to create
large features assuming different scaling factors over land
and ocean. At a given grid box, kernel smoothing computes
a weighted average of the surrounding grid boxes such that
the weights are inversely proportional to the distances. Here
we considered the Gaussian distribution as the kernel or the
weighting function. The final maps have means approxi-
mately equal to 1.0 for all 3 biases and standard deviations

approximately equal to 0.2 and 0.06 for land and ocean
biases, respectively.
[20] We created pseudo-observations (CO2 concentra-

tions) by running the transport model forward for four years
with the biased fluxes, holding the biases constant through-
out the years. In the fourth year, CO2 concentrations were
sampled at the observation stations. Each observation was
randomly perturbed by an error according to the specified
uncertainty level at the given station (see section 2.2). At the
end of the third year, the 3-D model state (CO2 concentra-

Table 1. (continued)

Code Name Latitude (deg) Longitude (deg) Altitude/Height (m)

WPL 55.00 �112.50 550
ZEP Ny-Alesund, Svalbard, Norway and Sweden 78.90 11.88 475

Rowley, Iowa, USA 42.40 �91.84 400
Homer, Illinois, USA 40.07 �87.92 400
Tower s.carol 33.41 �81.83 300
Martha’s Vineyard 41.33 �70.52 10
Sable Island 43.93 �60.02 20
Boreas NOBS 55.88 �98.48 30
Canaan Valy, West Virginia, USA 39.06 �79.42 30
Chestnut Ridge, Tennessee, USA 35.93 �84.33 30
Mead, Nebraska, USA 41.16 �96.47 10
Morgan Mon., Indiana, USA 39.32 �86.41 30
Fort Peck, Montana, USA 48.31 �105.10 30
Ozark, Missouri, USA 38.74 �92.20 30
Storm Peak Lab 40.45 �106.73 9
Fraser Exp For 39.90 �105.88 18
Niwot Ridge, T-Van 40.05 �105.58 5
Hidden Peak, Utah, USA 40.56 �111.64 18
Roof Butte Lookout, Navajo Reservation, USA 36.46 �109.10 20
Pajarito Mt, New Mexico, USA 35.89 �106.39 20
Jackson Hole Summit, Wyoming, USA 43.59 �110.85 10
Fir (summit) 44.65 �123.55 15
Metolius 44.45 �121.56 15
Yaquina Head 44.67 �124.07 15
Mary’s Peak 44.50 �123.55 15
NGBER (Burns) 43.45 �119.72 15
Carbo Europe (CE) Towers 53.32 �8.12
Carbo Europe (CE) Towers 78.90 11.88
Carbo Europe (CE) Towers 35.52 12.63
Carbo Europe (CE) Towers 45.75 3.00
Carbo Europe (CE) Towers 47.92 7.92
Carbo Europe (CE) Towers 44.18 10.70
Carbo Europe (CE) Towers 45.93 7.70
Carbo Europe (CE) Towers 46.55 7.98
Carbo Europe (CE) Towers 53.38 6.37
Carbo Europe (CE) Towers 54.93 8.32
Carbo Europe (CE) Towers 49.23 19.93
Carbo Europe (CE) Towers 67.97 24.12
Carbo Europe (CE) Towers 82.45 �61.48
Carbo Europe (CE) Towers 51.97 4.92
Carbo Europe (CE) Towers 47.97 2.10
Carbo Europe (CE) Towers 50.15 4.87
Carbo Europe (CE) Towers 53.33 23.25
Carbo Europe (CE) Towers 55.95 �2.78
Carbo Europe (CE) Towers 46.95 16.65
Carbo Europe (CE) Towers 43.80 11.20
Carbo Europe (CE) Towers 60.08 17.47
Carbo Europe (CE) Towers 41.58 �0.17
Carbo Europe (CE) Towers 44.20 0.90
Carbo Europe (CE) Towers 43.90 0.95

Aircraft Profiles
CAR Briggsdale, Colorado, USA 40.90 �104.80 Multiple
HAA Molokai Island, Hawaii, USA 21.23 �158.95 Multiple
PFA Poker Flat, Alaska, USA 65.07 �147.29 Multiple
RTA Rarotonga, Cook Islands �21.25 �159.83 Multiple
AIA Bass Strait/Cape Grim, Australia �40.53 144.30 Multiple
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tion) was saved, which was then used as the starting point
for the assimilation scheme.

2.4. Transport Model

[21] Inverse modeling methods require a transport model,
which serves as the observation operator (H in equation (1))
in the assimilation scheme. The observation operator per-
forms the necessary interpolations and transformations from
the state variable to the observation space. In the carbon
problem, the transport model converts CO2 fluxes on the
Earth’s surface to CO2 concentrations in the atmosphere. In
this study, we used the Parameterized Chemistry Transport
Model (PCTM) as the observation operator [Kawa et al.,
2004]. The core of the PCTM code consists of the semi-
Lagrangian advection scheme developed by Lin and Rood
[1996]. Subgrid-scale transport processes such as convection
and boundary layer turbulence have been included. The
model is driven by assimilated weather data from the
GEOS-4 (Goddard Earth Observation System, version 4)
reanalyses.
[22] In this study, PCTM was run at 10� longitude by 6�

latitude horizontal resolution with 25 vertical levels. The
model integration time step was 1 hour, which was consis-
tent with the assumed spatial resolution. The transport was
run at such a coarse spatial resolution for testing purposes
because it speeds up the forward run, which is the most time
consuming part in the assimilation scheme. The number of
degrees of freedom are also reduced in the state vector.
However, at coarse resolution, the transport becomes unre-
alistic. In real life problems, much finer scale horizontal
resolution would be used in order to get a better match with
the real observations. In a real data assimilation experi-
ment, biases could still be estimated at coarser resolution
(e.g., 10� longitude by 6� latitude), while running the
transport in high resolution (2.5� longitude by 2� latitude).

2.5. MLEF

[23] We minimize the cost function given in equation (1)
via an iterative conjugate-gradient algorithm, which con-
verges in a single iteration to the Kalman filter (KF) solution
given in (2), when the observation operator H in equation (1)
is linear and the ensemble size is equal to the size of the
control variable (theoretical proof given in Zupanski [2005],
Appendix A). Here the control variable is the vector of
unknowns. However, in the experiments presented, the
ensemble size is considerably smaller than the size of the
control variable, which might result in somewhat degraded
MLEF solution, compared to the KF solution. As demon-
strated by Zupanski et al. [2007a] the MLEF solution
smoothly converges to the KF solution as the ensemble size
approaches the size of the control vector, which provides a
justification for using smaller ensemble sizes (in this exper-
iment 200 ensemble members relative to the 1097
unknowns), with the benefit of reduced computational cost.
[24] There are two major steps involved in a data assim-

ilation cycle: (1) the analysis step, and (2) the forecast step.
In the analysis step, we find an optimal state by minimizing
the cost function (equation (1)), provided the observations.
In the forecast step, a prior for the next cycle is found by
applying a forecast model to the optimal state found at the
analysis step (see equations (8) and (9)). At the first
assimilation cycle (cold start), the background or initial
guess serves as the forecast.
[25] The prior and the posterior uncertainties of the

MLEF solution are defined in ensemble subspace as square

roots of the forecast error covariance P
1
2

f and the analysis

error covariance P
1
2
a:

P
1
2
a ¼ P

1
2

f I þ Að Þ�
1
2; ð6Þ

where

A ¼ P
T=2
f HTR�1HP

1=2
f ð7Þ

[26] The matrix A of dimension Nens � Nens (Nens being
the ensemble size) is the so-called information matrix in
ensemble subspace [Zupanski et al., 2007b] and is used in
this study as a guidance when determining the necessary
ensemble size. Selection of ensemble size is crucial in an
ensemble-based assimilation technique. Ensembles that are
too small deteriorate the quality of the final solution
whereas too large ensembles increase the computational
cost. In order to determine adequate ensemble size we
evaluated an information measure referred to as Degrees
of Freedom for Signal - DFS [e.g., Purser and Huang,
1993; Rodgers, 2000; Rabier et al., 2002; Fisher, 2003;
Zupanski et al., 2007b]. The DFS, being a positive integer
number limited by the ensemble size and the number of
observations, was considered a good indicator of whether
selected ensemble size was appropriate. We considered the
selected ensemble size appropriate if further increase in the
ensemble size did not result in the further increase of the
DFS. In this study, we selected 200 ensemble members
based on this measure.

Table 2. Observation Errors in ppm (sObs) at the Continuous Sites
According to the Local Time and Station Height

Local Time (t)

Station Height in Meters (h)

h < 50 50 
 h < 200 h � 200

0 20 10 1
1 20 10 1
2 20 10 1
3 20 10 1
4 20 10 1
5 20 10 1
6 20 10 1
7 15 10 1
8 10 5 1
9 5 5 1
10 5 1 1
11 1 1 1
12 1 1 1
13 1 1 1
14 1 1 1
15 1 1 1
16 1 1 1
17 5 1 1
18 5 5 1
19 10 5 1
20 15 10 1
21 20 10 1
22 20 10 1
23 20 10 1
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[27] We have assumed that the forecast model for the bias
is an identity model M = I. The forecast model explains the
evolution of state vector over time defined as

bf t þ 1ð Þ ¼ M ba tð Þ½ �; ð8Þ

and similarly evolution of covariance matrix is given by

Pf t þ 1ð Þ ¼ MPa tð ÞMT þ Q; ð9Þ

where Q represents the errors induced by imperfect forecast
model, which is usually neglected. Hence according to our
assumption, the previous analysis state becomes the prior
state for the next cycle. Biogeochemically, the use of the
identity matrix as a forecast means that we assume persistent
biases in modeled fluxes, but allow observations to correct
the assumption in each successive assimilation cycle.

2.6. Covariance Smoothing and Localization

[28] Strong covariance smoothing in the first data assim-
ilation cycle and covariance localization in all cycles are
required in this problem because of the sparseness of the
observing network. Previous large region inversions did not
require such schemes because the inversions were carried
out by prescribing perfectly correlated spatial structures for

several large regions, which were over-determined by the
observations. Large region inversions can be considered as
an extreme case of covariance smoothing.
2.6.1. Smoothing
[29] We introduce spatial correlations by assuming that

grid points are correlated according to an exponential decay
function [Rödenbeck et al., 2003; Michalak et al., 2004;
Peters et al., 2005]. Hence given any two grid points i and j,
we can formulate the state covariance function as

Pf ¼

s2
g s2

ge
�
dij

Lg 0 0 0 0

s2
ge

�
dij

Lg s2
g 0 0 0 0

0 0 s2
r s2

r e
�
dij

Lr 0 0

0 0 s2
r e

�
dij

Lr s2
r 0 0

0 0 0 0 s2
o s2

oe
�
dij

Lo

0 0 0 0 s2
oe

�
dij

Lo s2
o

2
66666666666666666666664

3
77777777777777777777775

;

ð10Þ

where dij is the great circle distance between ith and jth grid
points; sg

2, sr
2, and so

2 are variances of GPP, respiration, and
ocean biases respectively; Lg, Lr, and Lo are de-correlation
length scales for GPP, respiration, and ocean biases
respectively.
[30] Unlike previous studies [Michalak et al., 2004;

Peters et al., 2005, 2007], smoothing is introduced only
at the first cycle (cold start) of the MLEF. In MLEF, the
cross-correlations among the biases are not exactly zero as
in equation (10). We define the covariance matrices in
ensemble space (reduced rank space) as square roots of

the forecast error covariance P
1
2

f . In the first cycle, each
column of the matrix is generated by drawing a random
realization from the normal distribution with mean 0 and
variance sb

2 (variance of the bias parameter) and then by
adding exponential spatial smoothing. Since we never

explicitly use the full covariance matrix Pf = P
1
2

f P
T
2

f , we
cannot apply smoothing to it. Thus the full covariance will
indicate non-zero correlations between the distant grid
points and the cross-correlations between GPP and respira-
tion. Eventually, in the assimilation process, correlations
and cross-correlations that are absorbed from the observa-
tions are added. Because it reduces the number of degrees of
freedom, covariance smoothing also helps in reducing the
number of ensemble members required for the analysis.
[31] The actual length scales of persistent biogeochemical

model biases are not known. One could make a reasonable
guess by observing the spatial correlations of the auxiliary
variables such as soil moisture, soil temperature, leaf area
index, or nutrient levels, which may vary similarly to the
biases. In this study, we chose to smooth initial covariance
with an e-folding length of 800 km over the land points and
1600 km over the ocean points. These parameters were
selected according to previous studies [Michalak et al.,
2004; Peters et al., 2005, 2007] even though those studies

Figure 2. Chi-square statistic for each cycle is given in
Figure 2a. A plot of root mean square (RMS) error with
respect to the analysis and the prior is shown in Figure 2b.
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were focused on flux estimation. For the first assimilation
cycle only, we assumed that the spatial correlations are
isotropic (does not depend on the direction), which may not
be true in the real situation. However, in subsequent cycles,
the assimilation system ‘‘learns’’ about spatial covariance in
the biases of the component fluxes from the data in non-
isotropic ways.
2.6.2. Localization
[32] Covariance localization helps to constrain the data

assimilation problem with either limited number of obser-
vations or limited ensemble members [Houtekamer and
Mitchell, 1998, 2001; Peters et al., 2005; Zupanski et al.,
2007a]. Usually the ensemble size is of the order of
hundreds because of the computational limitations, whereas
the number of degrees of freedom could be in the order of
thousands or millions. Thus the approximation of the state
covariance matrix by a limited number of ensemble mem-
bers may cause large sampling errors in the covariance
between distant points. Localization is important in ensem-
ble data assimilation because it prevents sampling errors at
large distances and thereby reduces the ensemble size
required for the analysis dramatically.
[33] Peters et al. [2005] introduced a localization scheme

based on an exponential decay function, which imposed
circular regions of flux covariance centered at the observa-

tion sites. However the flux patterns may be neither exactly
circular nor centered at observation sites in carbon problem
due to the transport. In some occasions, an influence region
may not even contain the observation location because of
patterns of advection of CO2 fields. For example, the
distance over which NEE influences CO2 is much greater
in the direction of the wind than across wind, and varies
strongly with the degree of vertical mixing. We introduced a
localization scheme, which is sensitive to dynamical
changes in the analysis and forecast uncertainties [Zupanski
et al., 2007a]. To define a ‘‘distance’’ for covariance
localization, we employed the ratio r between the forecast
and the analysis uncertainty [or in other words, the ratio
between the prior (sPrior) and the posterior (sPosterior)
uncertainty] defined as

r ¼ sPrior

sPosterior

	 

; ð11Þ

where the prior uncertainty is defined as sPrior = diag Pf

� �� �1
2

and the posterior uncertainty is defined as sPosterior =
diag Pað Þ½ �

1
2.

[34] Note that both the prior and posterior uncertainty
correspond to the same time (same data assimilation cycle).
The problem here is that posterior uncertainty sPosterior is

Figure 3. (a) Pseudotruth, (b) recovered, and (c) percentage difference relative to the pseudotruth for
GPP bias (bGPP). Note that the prior equals to 1 everywhere (yellow color).
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only available after the ‘‘optimal’’ solution has already been
obtained, but we need it earlier, at the beginning of the
minimization of the cost function. However, an estimate of
sPosterior is obtained as a by-product of the Hessian precon-
ditioning [e.g., Zupanski, 2005], thus it is available for
calculating the ratio (11). The first estimate of sPosterior is
identical to the final sPosterior for linear models, while for
non-linear models it only approximates the final sPosterior. In
this application, the model (PCTM) is very close to linear,
thus the initial and final estimates of sPosterior are identical.
[35] According to information theory [e.g., Rodgers,

2000], and also equation (6) of this paper, the ratio between
the prior and the posterior error covariance matrices meas-
ures the information content of the assimilated observations.
Thus one can interpret the ratio r as a ‘‘transport-weighted
distance’’ defined in the space of the information measures.
Note that this distance is different from the geodesic
distance, which is used in most covariance localization
approaches in the current literature. For example r decreases
more slowly with distance in the direction of transport than
in other directions.
[36] The ratio r is always greater than or equal to one. The

greater values of the ratio represent the areas with the greater
influence from the observations. We selected the influence
regions based on the distributions of the ratio. The land and

the ocean regions were selected separately because of the
different magnitudes of the flux fields. In this study, we
selected 60% of land points and 10% of ocean points based
on the upper tail values of the ratio distribution.

2.7. Defining Priors

[37] In real situations, we do not have any prior informa-
tion about the biases. As a starting point we assume that the
carbon fluxes are unbiased, thus we use bGPP = bRESP =
bOcean = 1 at every grid point as priors in the first data
assimilation cycle. In all subsequent cycles, the estimated
biases from the previous cycle are used as priors. Selection
of the prior uncertainties for biases is crucial in data
assimilation. Choosing too tight or too loose uncertainties
may prevent reaching a reasonable solution. Because we
know the (simulated) ‘‘true’’ biases in this particular exper-
iment, we could have prescribed uncertainties as the differ-
ence between the truth and the prior. However, in a real
situation, such an estimator does not exist. Hence we
assumed constant prior standard deviations for the biases
at each grid point (sGPP = 0.1, sRESP = 0.1, and sOcean =
0.03) to be consistent with a real experiment.
[38] According to Bayesian theory, the posterior distribu-

tion lies in between the prior and the observed distributions.
However, if little information is available, the posterior

Figure 4. (a) Pseudotruth, (b) recovered, and (c) percentage difference relative to the pseudotruth for
respiration bias (bRESP). Note that the prior equals to 1 everywhere (yellow color).
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distribution tends to depend strongly on prior knowledge,
thus, the solution we reach strongly depends on the prior
distribution. Hence a reasonable prior distribution needs to
be defined at the beginning of the assimilation cycle in order
to achieve a realistic solution. In the case of a satellite
experiment, we would have more freedom to choose a loose
prior because of the tremendous amount of data.

3. Results and Discussion

[39] The assimilation cycle in this experiment lasts eight
weeks, so each year of optimization requires 6.5 assimila-
tion cycles. To test the performance of the model two
measures of Root Mean Square (RMS) errors are calculated:
One is based on the distance between the truth and the
analysis (rms_analysis); the other one is based on the
distance between the truth and the prior (rms_prior). In
any cycle, lower rms_analysis relative to the rms_prior
indicates that the solution is closer to the truth and hence
shows an impact from the observations. The c2 diagnostic
statistic evaluates the correctness of the innovation (ob-
served minus forecast) covariance matrix that employs the
predefined observation error covariance matrix R, and the
MLEF-computed forecast error covariance Pf [Zupanski,
2005]. Under the Gaussian assumption and for a linear
observation operator H, this statistic should be equal to one.
But, in reality, it is approximately (not exactly) equal to one

because of the statistically small samples (i.e., relatively few
observations per cycle). Very large c2 values indicate too
loose a fit to the observations and very small c2 values
indicate too tight a fit to the observations. Figure 2a shows
that the c2 statistic in each cycle is close to one, which
indicates that the errors are consistent. This also indicates
that the forecast error variance is estimated reasonably well
on a global scale, however, as will be shown later, under-
estimation of the forecast error variance occurs in data void
regions. RMS errors plotted in Figure 2b indicate an impact
from the observations in each cycle except the last two
cycles. One possible explanation for the slight increase of
the rms_prior is that the filter has achieved convergence
to the constant bias solution, given the available information
in the observations. This is possible in our pseudodata
experiment because the prescribed true biases are assumed
to be constant throughout the year. With the current data
coverage, we expect that up to 4 cycles (32 weeks) might be
needed to recover a constant bias. One could prescribe a
new bias after the first 32 weeks and perform the same
procedure as in the first 32 weeks. We would expect that the
MLEF would perform similarly, however, it might take
shorter or longer to recover this new bias, since the
atmospheric and biological conditions are different. These
additional experiments would be more appropriate with real
data, where the data would indicate what time scale would
be most realistic for the bias. These issues are beyond the

Figure 5. (a) Pseudotruth, (b) recovered, and (c) percentage difference relative to the pseudotruth for
ocean bias (bOcean). Note that the prior equals to 1 everywhere (yellow color).
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scope of this paper. Figure 2b shows relatively small
improvement over the priors because the recovered biases
show very little improvement over the ocean and the under
represented land regions and hence the RMS errors are
dominated by these regions.
[40] Results of the experiment with artificially generated

biases of GPP, respiration, and air-sea flux are shown in
Figures 3, 4, and 5. The Figures 3c–5c show the relative
error, (truth � recovered) � 100/truth, which indicates the
accuracy of the estimate. According to these plots, the

coupled model generally recovered the pseudotruth within
about 5–10% at most places after 6 assimilation cycles.
Poorly recovered areas are shown by red or purple colors.
The model performs well in the densely observed northern
latitude regions (North America, Europe) compared to the
sparsely observed southern latitude regions. Uncertainty
reduction with respect to the prescribed background uncer-
tainty for each bias component is given in Figure 6. The
maximum reduction appears where observation sites are
abundant. However, hotspots are not necessarily centered
on the observation sites, because of the nature of the
localization scheme we considered here, which takes into
account the dynamics of CO2 concentration fields. Uncer-
tainty reduction for the bias in air-sea flux is minimal
because the ocean fluxes are much weaker compared to
the land fluxes. Thus the observation sites tend to see a
much weaker signal from the ocean fluxes. Uncertainty
reduction is much smaller in the sparsely observed land
regions, as well.
[41] Figure 7 shows the estimated global annual mean

fluxes for GPP, respiration, and NEE. The left column ((a),
(c), and (e)) in the figure shows the true fluxes and the right
column ((b), (d), and (f)) shows the recovered fluxes.
Recovered fluxes show better agreement with the truth.
Poorly recovered grid boxes in the bias estimators (see
Figures 3c–4c) correspond to weaker or zero flux regions;
these regions have minimal impact on observable CO2, hence
they minimally or do not contribute to the flux estimation.
[42] Usually data assimilation requires a dynamic model

or a forecast model, which propagates the state vector and
state covariance matrix from one cycle to another. In this
experiment, we lack predictive equations to predict flux
biases b from one time window to the next. Rather we have
used the identity operator as the forecast model, as was done
by Peters et al. [2005, 2007]. Hence the analysis state from
a given cycle becomes the prior for the next cycle. How-
ever, the identity model cannot simulate error growth, so
over many assimilation cycles, error covariance can be
reduced to unreasonably small values. In such a case, the
perturbations used to generate each ensemble member
would become very small and the map of b’s could
converge prematurely to incorrect values. To avoid this
problem, covariance inflation was applied to avoid/reduce
covariance underestimation. At the end of each cycle, we
inflated the covariance matrix uniformly by 30% for land
points and by 5% for ocean points. Different magnitudes
were assumed because the covariance minimization is much
weaker for the ocean points compared to the land points.
This inflated covariance will be the prior covariance for next
cycle. Peters et al. [2005] introduced perturbations by
generating random numbers from the prescribed covariance
structure in each assimilation cycle, so that every cycle was
treated as a ‘‘cold start’’. One can reach a reasonable
solution with this technique, but it sacrifices the ability of
the filter to ‘‘learn’’ about the covariance. Since the filter
does not update the forecast error covariance, it does not
have an ability to learn about it from the observations.
[43] Once optimized biases are available, one can easily

estimate the CO2 fluxes and their uncertainties. For exam-
ple, if we wish to estimate the monthly average fluxes at a

Figure 6. Percentage uncertainty reduction for recovered
biases after six assimilation cycles for (a) GPP (bGPP),
(b) respiration (bRESP), and (c) ocean (bOcean).
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Figure 7. Mean annual fluxes for (a) GPP truth, (b) GPP recovered, (c) respiration truth, (d) respiration
recovered, (e) NEE truth, and (f) NEE recovered. Units are in 10�8 kgC/m2/s.
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given land location, we can simply calculate this quantity as

F ¼ bRESPRESP � bGPPGPP; ð12Þ

where . . .ð Þ represents the monthly average. The corre-
sponding uncertainty estimate is given by

s2
F ¼ RESPð Þ2s2

bRESP
þ GPPð Þ2s2

bGPP
� 2� RESPð Þ � GPPð Þ

� Cov bRESP; bGPPð Þ; ð13Þ

where s2
bRESP

= Var(bRESP) and s2
bGPP

= Var(bGPP).
[44] The mean flux over a region can be estimated as

�FRegion ¼
1

n

X
i

Fi ¼
1

n

X
i

bRESP;iRESPi �
1

n

X
i

bGPP;iGPPi;

ð14Þ

and the corresponding uncertainty in regional monthly NEE
is given by

s2
FRegion

¼ 1

n2

X
i

X
j

RESPð Þi � RESPð Þj � Cov bRESP;i;bRESP;j

� �

þ 1

n2

X
i

X
j

GPPð Þi � GPPð Þj � Cov bGPP;i; bGPP;j

� �

� 2

n2

X
i

X
j

RESPð Þi � GPPð Þj � Cov bRESP;i;bGPP;j

� �
;

ð15Þ

where i and j indicate the grid boxes within the region and n
indicates the total number of grid boxes in the region.
[45] Note that even though the prescribed covariance

matrix is defined by assuming that the GPP and respiration
are uncorrelated, after smoothing cross-correlations will be
added. Also, during the assimilation processes, the filter
develops these cross-correlations from the data. Hence in
the flux uncertainty estimation, these cross-correlations
need to be taken into account.
[46] As an example, we extracted the covariance matrices

of the biases for the North America Temperate region
(TransCom3 region = 2), which consists of 18 grid boxes
(see Figure 8). Figures 9a–9c indicate the prescribed error
covariance matrices (after smoothing) of bGPP, bRESP, and
their cross-covariance. Note that the grid points have been
correlated according to the exponential covariance function
and some noise is added to the cross-covariance, as de-
scribed in section 2.6.1. Figures 10a–10c show the
corresponding analysis error covariance matrices, after 6
assimilation cycles.
[47] All covariance matrices are diagonally dominant

(Figure 10). Even though we introduced strong smoothing
at the first cycle, these correlations were minimized through
the learning process. Since this is a well-observed region
(see Figure 2), learning from the observations was much
stronger and most correlations were relaxed by the 6th
assimilation cycle, making matrices (a) and (b) in Figure 10
diagonally dominant. In the process of assimilation, the
variances also were greatly minimized with respect to the
prescribed error covariance (compare the corresponding

Figure 8. Grid boxes that are numbered from 1 to 18 indicate the North America Temperate (TC-2)
region. Note that these numbers correspond to the covariance matrices defined in Figures 9 and 10.
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diagonal values of (a) and (b) in Figure 9 with Figure 10).
These plots also show that the minimization was much
stronger in the areas where observations are abundant. The
cross-covariance matrix has a more pronounced diagonal in
Figure 10c, indicating that the two bias components are
correlated at a given location, and almost negligible corre-

lations further apart. The average correlation along the
diagonal is about 0.39 and all correlations are positive. It
is possible that these weak correlations are coming from the
component fluxes and hence may affect the interpretation of

Figure 9. Prescribed error covariance matrices (after
smoothing) of (a) bGPP, (b) bRESP, and (c) their cross-
covariance for Temperate North America region.

Figure 10. Analysis error covariance (Pa) matrices of
(a) bGPP, (b) bRESP, and (c) their cross-covariance for
Temperate North America region after six assimilation
cycles.
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the biases. We do not interpret these results quantitatively
because this is a pseudodata experiment.
[48] Using equations (14) and (15), one can easily

compute the mean flux along with the uncertainty for a
given region, provided the monthly averages of GPP and
respiration. We estimated the mean NEE along with their
uncertainties for three well observed land regions and two
sparsely observed land regions (see Figure 11). North
American and European regions, which contain a large
number of observation sites, were satisfactorily recovered
with substantial uncertainty reductions (Figures 11a–11c).
The Boreal Asia region was moderately recovered (see
Figure 11d). In the South African region, very little change
occurred in recovered NEE from the assumed prior be-
cause of under representation of the observation sites (see
Figure 11e).
[49] Figure 12 shows the ocean flux estimates for 2

Transcom oceanic regions; North Pacific and Southern
ocean. In the Southern Ocean region, the recovered flux

showed very little improvement from the prior (see Figure 12b).
Our method satisfactorily recovered the fluxes in the North
Pacific oceanic region (see Figure 12a). In the oceanic
regions, error minimization was minimal compared to the
land regions. The percentage minimization with respect the
prior for North Pacific and Southern Ocean were 13% and
8%, respectively. Previous studies also show that the
uncertainty reduction over the oceanic regions was smaller
compared to land regions [Peters et al., 2005; Gurney et
al., 2004]. In comparison to the previous batch mode
inversion results by Gurney et al. [2004], our method
showed a great uncertainty reduction over well-observed
land regions such as Boreal North America, Temperate
North America, and Europe. This is due to the capability of
assimilating large observation vectors with this method.
However, the results over the oceanic regions did not show
much improvement.
[50] The magnitudes of the error bars depend on the

season. For example, in North America and Europe, mag-

Figure 11. Mean NEE flux estimates with uncertainty for Boreal North America, Temperate North
America, Europe, Boreal Asia, and South African regions (red—recovered, black—prior, and blue—
truth).
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nitudes of the error bars during the winter were much
smaller than those of during the summer (see Figures
11a–11c). This happened because the NEE uncertainty is
a function of the component (GPP and respiration) fluxes,
which depend on the season (see equation (15)).
[51] Even though the mean fluxes were satisfactorily

recovered, uncertainties were underestimated by the meth-
od, because of the lack of a better forecast model. The
identity operator satisfactorily propagates the mean biases.
However, covariance inflation, which serves as the covari-
ance propagation model, is not sufficient for this particular
case. We inflated both land and ocean biases uniformly
(land by 30% and ocean by 5%). This forecast model may
be suitable for a densely observed system as in an inversion
using satellite observations. However, with the current
observation network, densely observed regions were satis-
factorily recovered but the forecast error variance was
underestimated. On the other hand, sparsely observed
regions were poorly recovered and the forecast error vari-
ance was overestimated. This problem can be avoided by
eliminating the forecast error covariance update and per-
turbing the prior mean by prescribed covariance matrix in
each cycle [Peters et al., 2005, 2007], however, at the price
of losing the capability to ‘‘learn’’ about the forecast error
covariance, even in the densely observed areas. Unlike in
the study of Peters et al. [2005] we retained the update of

the forecast error covariance over the entire global domain,
however, our filter was able to ‘‘learn’’ about the forecast
error covariance only in the data rich regions. We are
currently examining ways to improve the filter performance
in the data sparse regions, by employing a variable inflation
scheme based on the sigma ratio defined in equation (11).

4. Conclusions

[52] In this study, we have introduced an ensemble-based
technique to estimate biases of photosynthesis, respiration,
and ocean fluxes at each model grid point over a global
scale. Some of the unique characteristics of this technique
are the use of the MLEF approach, application of a
computationally inexpensive processing of observations
(compared to serial processing of observation in the previ-
ous studies), and the use of a ‘‘flow-dependent’’ distance
function for covariance localization. The method performs
satisfactorily with the existing observation network of flask
measurements, continuous measurements and aircraft pro-
files and shows that it is capable of handling very large state
vectors. However, it requires strong smoothing in the first
data assimilation cycle and covariance localization in all
cycles in order to get a reasonable solution.
[53] The current observing network is much more dense

over North America and Europe than in other regions.
Hence fluxes in these regions were recovered quite well
with the assimilation scheme. Fluxes on the more sparsely
observed southern continents were poorly recovered. More
spatial coverage of observation stations is essential in grid-
scale global inversions rather than accumulating more sites
in already well represented areas.
[54] Ocean biases were poorly recovered with our assim-

ilation scheme. In this case, the percentage uncertainty
reduction was also minimal. Ocean fluxes are approximately
ten times weaker than the land fluxes. Hence signals at the
observation sites are dominated by the land fluxes. Little
improvement to the ocean bias can be introduced by consid-
ering separate influence functions for land and ocean. In
future work, this method will be implemented with real
observations (and compared with other approaches).
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A. Chédin, and P. Ciais (2005), Inferring CO2 sources and sinks from
satellite observations: Methods and application to TOVS data, J. Geophys.
Res., 110, D24309, doi:10.1029/2005JD006390.

Cohn, S. E. (1997), An introduction to estimation theory, J. Meteorol. Soc.
Jpn., 75, 257–288.

Crisp, D., and C. Johnson (2005), The orbiting carbon observatory mission,
Acta Astronaut., 56(1–2), 193–197.

Denman, K. L., et al. (2007), Coupling between changes in the climate
system and biogeochemistry, in Climate Change 2007: The Physical
Science Basis. Contribution of Working Group 1 to the Fourth Assess-
ment Report of the Intergovernmental Panel on Climate Change, edited
by S. Solomon et al., Cambridge Univ. Press, New York.

Denning, A. S., J. G. Collatz, C. Zhang, D. A. Randall, J. A. Berry,
P. J. Sellers, G. D. Colello, and D. A. Dazlich (1996), Simulations
of terrestrial carbon metabolism and atmospheric CO2 in a general
circulation model. part 1: Surface carbon fluxes, Tellus, 48B, 521–
542.

Engelen, R. J., A. S. Denning, K. R. Gurney, and TransCom3 modelers
(2002), On error estimation in atmospheric CO2 inversions, J. Geophys.
Res., 107(D22), 4635, doi:10.1029/2002JD002195.

Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-
geostropic model using Monte Carlo methods to forecast error statistics,
J. Geophys. Res., 99(C5), 10,143–10,162.

Fisher, M. (2003), Estimation of entropy reduction and degrees of freedom
for signal for large variational analysis systems, ECMWF Tech. Memo.
No. 397, 18 pp, European Center for Medium-Range Weather Forecasts
(ECMWF), Reading, UK.

Fletcher, S. J., and M. Zupanski (2006), A data assimilation method for
lognormally distributed observational errors, Q. J. R. Meteorol. Soc., 132,
2505–2520.

Gurney, K. R., et al. (2002), Towards robust regional estimates of CO2

sources and sinks using atmospheric transport models, Nature, 415,
626–630.

Gurney, K. R., et al. (2004), Transcom 3 inversion intercomparison: Model
mean results for the estimation of seasonal carbon sources and sinks,
Global Biogeochem. Cycles, 18, GB1010, doi:10.1029/2003GB002111.

Houtekamer, P. L., and H. L. Mitchell (1998), Data assimilation using an
ensemble Kalman filter technique, Mon. Weather Rev., 126, 796–811.

Houtekamer, P. L., and H. L. Mitchell (2001), A sequential ensemble Kal-
man filter for atmospheric data assimilation, Mon. Weather Rev., 129,
123–137.

Kaminski, T., M. Heimann, and R. Giering (1999), A coarse grid three-
dimensional global inverse model of the atmospheric transport—2.
Inversion of the transport of CO2 in the 1980s, J. Geophys. Res.,
104(D15), 18,555–18,581.

Kaminski, T., P. J. Rayner, M. Heimann, and I. G. Enting (2001), On
aggregation errors in atmospheric transport inversions, J. Geophys.
Res., 106(D5), 4703–4715.

Kawa, S. R., D. J. Erickson III, S. Pawson, and Z. Zhu (2004), Global CO2

transport simulations using meteorological data from the NASA data
assimilation system, J. Geophys. Res., 109, D18312, doi:10.1029/
2004JD004554.

Lin, S. J., and R. B. Rood (1996), Multidimensional flux-form semi-
Lagrangian transport schemes, Mon. Weather Rev., 124, 2046–2070.

Michalak, A. M., L. Bruhwiler, and P. P. Tans (2004), A geostatistical
approach to surface flux estimation of atmospheric trace gases, J. Geo-
phys. Res., 109, D14109, doi:10.1029/2003JD004422.

Montzka, S. A., P. Calvert, B. D. Hall, J. W. Elkins, T. J. Conway, P. P.
Tans, and C. Sweeney (2007), On the global distribution, seasonality, and
budget of atmospheric carbonyl sulfide (COS) and some similarities to
CO2, J. Geophys. Res., 112, D09302, doi:10.1029/2006JD007665.

Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol,
D. Zupanski, L. Bruhwiler, and P. P. Tans (2005), An ensemble data
assimilation system to estimate CO2 surface fluxes from atmospheric
trace gas observations, J. Geophys. Res., 110, D24304, doi:10.1029/
2005JD006157.

Peters, W., et al. (2007), An atmospheric perspective on North American
carbon dioxide exchange: Carbon tracker, Proc. Natl. Acad. Sci. U.S.A.,
104(48), 18,925–18,930.

Purser, R. J., and H.-L. Huang (1993), Estimating effective data density in a
satellite retrieval or an objective analysis, J. Appl. Meteorol., 32, 1092–
1107.

Rabier, F., N. Fourrie, C. Djalil, and P. Prunet (2002), Channel selection
methods for Infrared Atmospheric Sounding Interferometer radiances,
Q. J. R. Meteorol. Soc., 128, 1011–1027.
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