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[1] Owing to global spatial sampling and sheer data volume, satellite CO2 concentrations
can be used in inverse models to enhance our understanding of the carbon cycle. Using
column measurements to represent a transport model grid column may introduce spatial,
local clear-sky, and temporal sampling errors into inversions: the footprint is smaller than a
grid cell, total column concentrations are only retrieved in clear skies, and the mixing
ratios are only sampled at one time. To investigate these errors, we used a coupled
ecosystem-atmosphere cloud-resolving model to create CO2 fields over fine (�1�� 1�) and
coarse (�4� � 4�) grid columns from 1 km2 and 25 km2 pixels that utilized explicit
microphysics. We performed two simulations in August 2001: one in central North
America and one in the Brazilian Amazon. Differences between satellite and grid column
concentrations were calculated by subtracting the domain mean column concentration from
10-km-wide simulated satellite measurements. Spatial and local clear-sky errors were
less than 0.5 ppm for the fine grid column; however, these errors became large and biased
over the coarse grid column in North America. To avoid these errors, transport models
should be run at high resolution. Using satellite measurements to represent bimonthly
averages created large (>1 ppm) errors for all cases. The errors were negatively biased
(approximately �0.4 ppm) in the North American simulation, indicating that inverse
models cannot use satellite measurements to represent temporal averages. Simulated
representation errors did not arise because of differences in ecosystem metabolism in
cloudy versus sunny conditions; rather, they reflected large-scale CO2 gradients in
midlatitudes that were organized along frontal boundaries and masked under regional cloud
cover. Such boundaries were not found in the dry-season tropical simulation presented
here and may be less prevalent in the tropics in general. To avoid incurring errors,
inversions must accurately model synoptic-scale atmospheric transport and CO2

concentrations must be assimilated at the time and place observed.
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1. Introduction

[2] Variations of atmospheric CO2 concentrations contain
information about sources and sinks which air interacts with
as it is transported from place to place. Using atmospheric
tracer transport models, inverse modelers can quantitatively
estimate the strengths and spatial distribution of sources and
sinks around the world from concentration data [Gurney et
al., 2002; Rödenbeck et al., 2003; Baker et al., 2006]. These
flux estimates are still highly uncertain in many regions
because of sparse data coverage [Gurney et al., 2003].
Satellite CO2 measurements have the potential to help
inverse modeling studies by improving the data constraint
because of their global spatial sampling and sheer data

volume. Previous studies have indicated that using spatially
resolved, global measurements of the column-integrated dry
air mole fraction (XCO2) with precisions of �1 ppm will
reduce the uncertainties in regional estimates of sources and
sinks of atmospheric CO2 [Rayner and O’Brien, 2001;
Miller et al., 2007; Chevallier et al., 2007].
[3] Two existing satellites, the Atmospheric Infrared

Sounder (AIRS) and the Scanning Imaging Absorption Spec-
trometer for Atmospheric Chartography (SCIAMACHY),
provide information about CO2 concentrations. AIRS, on
the Aqua platform launched in May 2002, measures 2378
spectral channels in the infrared (IR) from 3.74 to 15.4 mm
[Aumann et al., 2003]. AIRS has a 1330 LSTequator crossing
time, nine 1.1� by 0.6� footprints in a single FOV, and scans
±48.95� from nadir, making 90 measurements per scan. A
study by Engelen et al. [2004] demonstrated the feasibility of
global CO2 estimation using AIRS data in a numerical
weather prediction data assimilation system. Since AIRS
measures IR radiances rather than reflected sunlight, it
can be used to measure upper tropospheric-weighted CO2

concentrations during the day and at night; however, atmo-
spheric mixing makes the upper tropospheric CO2 concen-
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trations rather zonal, indicating that AIRS data can only
inform about very broad features of the surface fluxes
[Chevallier et al., 2005]. SCIAMACHY, which embarked
on board the European Space Agency (ESA) Envisat satellite
in 2001, is a polar-orbiting nadir looking instrument that
measures reflected sunlight in the UV, visible, and near IR
regions from 240 to 2400 nm. SCIAMACHY has a 30 �
60 km2 footprint that scans across a 960-km-wide swath and a
35 d repeat cycle with global coverage in �6 d. Studies by
Houweling et al. [2004] and Buchwitz et al. [2005] indicate
that SCIAMACHY measurements may be capable of detect-
ing regional CO2 surface source/sink regions; however,
accurate SCIAMACHY CO2 retrievals are limited to land
regions because of low surface reflectivity over the ocean
and are difficult because of calibration issues and spectral
and spatial resolution [Houweling et al., 2004; Buchwitz et
al., 2005].
[4] Two satellites designed specifically to measure XCO2

with �0.3–0.5% (1–2 ppm) precision are scheduled to
launch in late 2008: the Orbiting Carbon Observatory
(OCO) [Crisp et al., 2004; Miller et al., 2007] and the
Greenhouse gases Observing Satellite (GOSAT) [National
Institute for Environmental Studies, 2006]. Both satellites
will collect high-resolution spectra of reflected sunlight in
the 0.76 mm O2 A-band and the CO2 bands at 1.61 mm and
2.06 mm. A single sounding will consist of simultaneous
observations from all three bands. OCO and GOSATwill fly
in a polar Sun-synchronous orbit to provide global coverage
with an equator crossing time �1300 LST. OCO will orbit
just ahead of the Earth Observing System (EOS) Aqua
platform in the A-train, which has a 16-d repeat cycle. To
obtain an adequate number of soundings on regional scales
even in the presence of patchy clouds, OCO will have a 10-
km-wide cross-track field of view (FOV) that is divided into
eight 1.25-km-wide samples with a 2.25 km down-track
resolution at nadir. GOSAT will orbit at an altitude of
666 km with a 3-d recurrence. GOSAT is designed with
cross-track pointing ability and will sample points with a
variable width from 88 to 800 km.
[5] CO2 concentration fields retrieved from satellites will

be used as inputs to synthesis inversion and data assimila-
tion models to help reduce uncertainties in flux estimates;
however, to utilize these measurements, care must be taken
to sample the models following the satellite sampling
strategy as closely as possible. Spatial representativeness
errors may be introduced into inversions that compare CO2

concentrations from a model grid column to satellite con-
centrations sampled over only a fraction of the domain.
Local clear-sky errors may exist in inversions that compare
concentrations in a grid column that may be partially cloudy
to total-column CO2 concentrations sampled at the same
time but only over clear areas. Temporal sampling errors
can result from comparing satellite measurements to tem-
porally averaged concentrations. Incorrectly accounting for
these errors could lead to errors in the flux estimates,
particularly if they are biased. Spatially coherent biases as
small as 0.1 ppm will alter flux estimates and must be
accounted for [Miller et al., 2007]. Chevallier et al. [2007]
simulated the impact of undetected biases and showed that
regional biases of only a few tenths of a ppm in column
averaged CO2 can bias the inverted yearly subcontinental
fluxes by a few tenths of a gigaton of carbon. To avoid

incurring errors in inversions, the spatial, clear-sky, and
temporal sampling errors need to be investigated and
quantified.
[6] Spatial representation errors are determined by the

spatial variability: as horizontal spatial heterogeneity
increases, observations characterize smaller areas and rep-
resentation errors increase [Gerbig et al., 2003; Wofsy and
Harriss, 2002]. Gerbig et al. [2003] used aircraft data to
investigate spatial representation errors of mixed layer
averaged CO2 mixing ratios and concluded that spatial
representation errors reach 1–2 ppm for a typical 200–
400 km horizontal resolution grid cell. Expanding on
Gerbig’s analysis, Lin et al. [2004] found column CO2

spatial representation errors of �0.6–0.7 ppm over North
America and �0.2–0.3 ppm over the Pacific Ocean. Con-
sistent with the results from Lin et al. [2004], an analysis of
regional XCO2 variability using coarsely modeled (5.5� �
5.5�) total column CO2 shows that the spatial variability is
smaller over oceans than over land and reveals that the
spatial variability varies seasonally as well as geographically,
with higher variability during the northern hemisphere sum-
mer and lower variability in winter [Miller et al., 2007].
[7] Although studies have investigated the spatial vari-

ability and associated representation errors of total column
CO2, little research has been focused on clear-sky and
temporal representation errors. This study analyzes spatial,
local clear-sky and temporal sampling errors using a cloud
resolving, coupled ecosystem-atmosphere model, SiB2-
RAMS. We performed simulations over a temperate forest
region and a tropical region, and we investigated these
errors for both fine (�1� � 1�) and coarse (�4� � 4�) grid
columns by simulating CO2 concentrations over these
regions using explicit microphysics and grid cell increments
of 1 km and 5 km, respectively.

2. Methods

2.1. Model Description, SiB2-RAMS

[8] The Simple Biosphere Model (SiB2) calculates the
transfer of energy, mass, and momentum between the
atmosphere and the vegetated surface of the earth [Sellers
et al., 1996a, 1996b]. The coupled meteorological model is
the Brazilian version of the Colorado State Regional Atmo-
spheric Modeling System (RAMS) [Freitas et al., 2006].
RAMS is a comprehensive mesoscale meteorological mod-
eling system designed to simulate atmospheric circulations
spanning in scale from hemispheric scales down to large
eddy simulations of the planetary boundary layer [Pielke et
al., 1992; Cotton et al., 2002]. Details of the coupled model
are given by Denning et al. [2003], Nicholls et al. [2004],
Wang et al. [2007], and L. Lu et al. (Simulating the two-way
interactions between vegetation biophysical processes and
mesoscale circulations during the 2001 Santarem Field
Campaign, submitted to Journal of Geophysical Research,
2007, hereinafter referred to as Lu et al., submitted manu-
script, 2007).
[9] This study focuses on two simulations, one in North

America (NA) and one in South America (SA). Both
simulations consist of four levels of nested grids down to
a fine domain of 97 km by 97 km with a grid increment of
1 km (Figures 1 and 2). The NA simulation has 45 vertical
levels extending up to 23.5 km, and the SA simulation has
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32 vertical levels up to 24 km. To simulate cloud and
precipitation processes explicitly, both simulations use the
bulk microphysical parameterization in RAMS [Meyers et
al., 1997; Walko et al., 1995]. We use the Mellor and
Yamada [1982] scheme for vertical diffusion, the
Smagorinsky [1963] scheme for horizontal diffusion, and
the two-stream radiation scheme developed by Harrington
[1997]. At the lateral boundaries we utilize the radiation
condition discussed by Klemp and Wilhelmson [1978].

2.2. Input Data

[10] The vegetation cover is derived from the 1-km
AVHRR land cover classification data [Hansen et al.,
2000], and this study used 1-km resolution Normalized
Difference Vegetation Index (NDVI) data from SPOT-4
(Systeme Probatoire d’Observation de la Terre polar orbit-
ing satellite; United States Department of Agriculture/
Foreign Agriculture Service and Global Inventory Modeling
and Mapping Studies). The meteorological fields in NA are
initialized by and the lateral boundaries are nudged every 3 h
by the National Center for Environmental Prediction
(NCEP) mesoscale Eta–212 grid reanalysis with 40-km
horizontal resolution (AWIPS 40-km). The SA simulation
is initialized and driven by 6-hourly lateral boundary con-
ditions derived from Centro de Previsao de Tempo e
Estudos Climaticos (CPTEC) analysis products.
[11] Surface carbon fluxes due to fossil fuel combustion,

cement production, and gas flaring are prescribed from the
1995 CO2 emission estimates of Andres et al. [1996], with a
1.112 scaling factor applied to adjust the strength for August
2001 [Marland et al., 2005; Wang et al., 2007]. The air-sea

CO2 fluxes are the monthly 1995 estimates from Takahashi
et al. [2002]. The initial CO2 field and the lateral bound-
aries in SiB2-RAMS are set to 370 ppm for NA and
360 ppm for SA. A more detailed description of the input
data and initialization can be found in Wang et al. [2007]
and Lu et al. (submitted manuscript, 2007) for NA and SA,
respectively.

2.3. Case Descriptions

[12] The NA simulation was centered on the WLEF tower
in Wisconsin (Figure 1) (see Davis et al. [2003], Bakwin et
al. [1998] and Ricciuto et al. [2007] for a description of
the site and measurements). We analyzed the third grid
(Figure 1, bottom left), which will be referred to as the
coarse grid column and the fourth grid (Figure 1, bottom
right), which we denote as the fine grid column. The coarse
grid column was 450 km by 450 km with a 5 km grid
increment. The northeastern portion of the domain included
Lake Superior, the upper and middle regions are dominated
by mixed forest, and the southern third contained significant
areas of agriculture and cropland. The fine grid column,
which was 97 km � 97 km with a 1 km grid increment, was
primarily mixed forest and broadleaf deciduous trees with a
few patches of evergreens. This grid had several small
lakes, with one of the larger lakes just north of the WLEF
tower.
[13] This case ran from 0000 UT 11 August to 0000 UT

21 August 2001. During this 10-d time period, three
cold fronts passed over the WLEF tower. The first simulated
front passed at 0200 local standard time (LST) on
12 August, the second front passed at 2300 LST the night
of 15 August, and the third front passed over the tower at
1800 LST on 17 August. During the simulation, the wind
was light and southwesterly except during the fontal pas-

Figure 1. Grid setup over North America, with the nested
grids outlined in red. The vegetation classifications for the
coarse grid column (grid 3) and the fine grid column (grid
4) are shown in the bottom left and right images,
respectively. The red cross indicates the location of the
WLEF tower.

Figure 2. Grid setup in the South American simulation.
The four grids in the simulation are outlined in red. The red
cross displays the Tapajos Km 67 tower.
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sages, when the wind strengthened and rotated clockwise to
northerly flow. For a more complete description of this case
and the meteorological conditions, see Wang et al. [2007].
[14] This 10-d time period was chosen to capture the front

on 15–16 August, which caused the most significant CO2

concentration variation seen at the WLEF tower that sum-
mer. Investigating the representation errors over a time
period when the concentration at 396 m varied by more
than 40 ppm in 36 h provides an estimate of the errors
during a significant synoptic event. Since the simulation is
characterized by considerable CO2 variability, the error
estimates from this case are likely to be the maximum
errors associated with this site.
[15] The simulation in SA was centered over the Tapajos

River in Brazil (Figure 2), and ran from 0000 UT 1 August
to 0000 UT 16 August 2001. Similar to the NA case, we
analyzed the third (Figure 2, bottom left) and fourth
(Figure 2, bottom right) grids, denoted as the coarse and
fine grid columns, respectively. The coarse column was
335 km by 335 km with a 5-km grid increment. The Tapajos
River flowed northward through the center of the domain,
and the region was covered primarily by broadleaf ever-
green forest and short vegetation, which consisted of pasture
and mixed farming. The fine domain was 97 � 97 km, with
a 1-km grid increment. The dominant land type for this
region was pasture and mixed farming, inland water com-
prised �30% of the domain, and the remaining vegetation
was broadleaf evergreen forest. On the east side of the
Tapajos River, the Km-67 eddy covariance flux tower
measured heat, moisture and trace gas fluxes, CO2 concen-
trations, and radiation profiles [Saleska et al., 2003]. This
case occurred during the dry season and was characterized
by calm conditions without fronts or squall lines. During the
simulation, intense trade winds blew almost constantly, little
precipitation fell over most of the domain, and the clouds
were predominantly cumulus. Lu et al. [2005, also
submitted manuscript, 2007] provide a further discussion
of this simulation.
[16] The unique physical setting of the SA case with

respect to the topography and the Tapajos River produces a
unique mesoscale and micrometeorological environment
[Lu et al., 2005]. This time period was chosen to avoid
squall lines and organized weather patterns, highlighting
CO2 variability due to the heterogeneous river and vegeta-
tion cover and mesoscale circulations. Analyzing this sim-
ulation will provide estimates of the representation errors
expected from water-vegetation interactions including a
low-level convergence line. The error estimates from this
simulation represent estimates from local circulation pat-
terns rather than from large-scale features, and these errors
provide the expected maximum error of CO2 due to surface
heterogeneity.

2.4. Model Evaluation

[17] The two simulations analyzed in this study are
evaluated against observations in complementary publica-
tions. Wang et al. [2007] focused on the 15 August frontal
passage in the North American simulation to analyze the
impact of fronts and synoptic events on the CO2 concen-
tration. A high CO2 air mass built up in the southern Great
Plains on 14–15 August because of the slow photosynthesis
rate caused by hot and dry air over Oklahoma and Texas and

strong nighttime respiration in the southeast. This air mass
traveled north and was primarily responsible for the high
concentrations just prior to the front on 15 August, although
weak local photosynthesis on 15 August and strong night-
time respiration under overcast sky conditions also contrib-
uted to the accumulation of CO2. Wang et al. [2007]
concluded that the atmospheric CO2 variations during this
time period were dominated by coherent regional anomalies
that were advected by synoptic-scale systems. In the study,
Wang et al. [2007] compared the near-surface meteorolog-
ical fields between observations and SiB2-RAMS for the
period 11 August 2001 through 20 August 2001, including
evaluations of temperature, water vapor mixing ratio, wind
speed, wind direction, net ecosystem exchange (NEE), and
CO2 concentration anomalies.
[18] Lu et al. (submitted manuscript, 2007) analyzed the

SA simulation depicted here to investigate mesoscale cir-
culations and atmospheric CO2 variations over a heteroge-
neous landscape during the Santarem Mesoscale Campaign
(SMC) of August 2001. They evaluated the modeled CO2

concentrations and fluxes, sensible and latent heat fluxes,
temperature, and winds compared to observations, showing
that the model captured the temperatures, winds, NEE, and
daytime CO2 concentrations reasonably well. Lu et al.
(submitted manuscript, 2007) found that the topography,
the differences in roughness length between water and land,
the juxtaposition of the Amazon and Tapajos Rivers, and the
resulting horizontal and vertical wind shears all facilitated
the generation of local mesoscale circulations and a low-
level convergence line.
[19] To evaluate the effect of clouds on the carbon flux

and CO2 concentration, we compared modeled NEE and
CO2 to the observations sampled at the towers located in the
domains (see section 2.3 for the tower descriptions). For the
NA case, we sampled the model at the WLEF tower
location and compared hourly net radiation, CO2 concen-
trations at 396 m, and NEE over the 10-d simulation to the
corresponding hourly observations at the WLEF tower. We
performed a similar comparison for the SA simulation: we
sampled the model at the location of the Km-67 tower and
compared the modeled shortwave radiation, the CO2 con-
centration sampled at 60 m, and NEE over the simulation to
the corresponding hourly data sampled at the flux tower.
[20] To investigate the response of the carbon flux to

various cloud conditions, we compared the modeled and
observed NEE to incoming radiation and overlaid a 2-
harmonic function fit to both the model output and the
tower observations (Figure 3). At both locations for con-
ditions with radiation values higher than 650 W m�2, which
corresponds primarily to clear or mostly clear conditions,
the fits to both the model and the in situ observations have a
constant uptake of �10 mmol m�2 s�1 and �13.5 mmol
m�2 s�1 for NA and SA, respectively. As the radiation
decreases from 650 W m�2 the carbon uptake also
decreases; however, the observed decrease occurs at higher
radiation values. Simulated uptake remains relatively con-
stant until the radiation decreases to �400 W m�2, while the
observed uptake has a higher light saturation and thus
begins decreasing at higher radiation values. SiB2.5 calcu-
lates photosynthesis for a single sun leaf and uses an
empirical adjustment to extinction law in conjunction with
satellite information to adjust carbon flux up to canopy scale
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[Baker et al., 2005]. Using this technique is known to result
in model photosynthesis reaching light saturation too soon,
resulting in enhanced uptake for moderate radiation values
[e.g., Dai et al., 2003; Dickinson et al., 1998]. The
enhanced uptake in the model could decrease the surface
CO2 concentrations during moderately cloudy to overcast
conditions and just after sunrise and before sunset.
[21] To investigate the relationship between cloud cover

and CO2 concentrations, we compared modeled and ob-
served CO2 concentrations to the corresponding radiation
(Figure 4). Since the CO2 concentration in the model has a
prescribed background, we compared the concentration
anomalies, which are calculated by subtracting the mean
of the CO2 concentrations during the simulated time period
from the data sets. In both NA and SA, the variability of
the CO2 concentration increases with decreasing radiation,
and this characteristic is seen in both the model and the
observations. For clear-sky conditions with radiation val-
ues above 650 W m�2, the concentrations are lower than
the mean. Over NA, the concentrations are highest for
moderate radiation (between 650 and 300 W m�2), while
over SA the concentrations increase as radiation
decreases. Despite the model having enhanced uptake
for moderate to low radiation, the mean values for these
radiation bins remain within �1 ppm. The relatively
small differences between the modeled and observed
concentrations indicate that the model does a reasonable
job of capturing the overall behavior of the CO2 concen-
tration in various sky conditions.

2.5. Simulating Satellite Measurements Using
SiB2-RAMS Output

[22] To simulate satellite CO2 retrievals over the two
simulations, we mimic the OCO sampling strategy. Since
OCO will estimate total column CO2 concentrations, the
modeled concentrations are vertically integrated by pressure
weighting using a standard atmosphere. All simulated tracks
are sampled at 1300 LST to approximate the satellite
overpass time. Since we are investigating small domains
that satellites will fly over very quickly, we assume that
OCO travels due south and that all the footprints in a track
will be averaged together to yield only one concentration for
the grid. We created a track width of 10 km by averaging the
appropriate number of pixels in the x direction, which
corresponds to 10 pixels for the fine domain and 2 pixels
for the coarse domain. To create one satellite value for each
possible track, we meridionally averaged the pixels to create
a single measurement. Using these criteria, the fine domains
have 88 different possible satellite tracks: the first track is
on the western edge of the domain (x = 1:10), the second
track is one pixel eastward (x = 2:11), and the final track is
along the eastern edge (x = 88:97). The coarse domain in
NA has 87 different tracks, and the SA coarse domain has
65 possible satellite tracks.
[23] Since the satellite retrieval requires clear conditions,

only pixels with clear-sky are included in the simulated
satellite concentrations (unless otherwise specified). A pixel
is considered clear if the cloud optical depth t < 0.2. This
threshold was selected as it is the approximate threshold for
which precise XCO2 retrievals are possible [Miller et al.,
2007; Crisp et al., 2004]. In the NA simulation, 2 d are

Figure 3. Observed (solid) and modeled (shaded, sampled
from the grid cells including the towers) NEE, in mmol m�2

s�1, versus radiation, in W m�2. (top) Evaluation at NA and
(bottom) results from SA. For NA, the radiation includes
longwave, and the values have been subtracted by 200 W
m�2 for easier comparison. The SA radiation is shortwave
only. A two-harmonic fit to each time series has been
overlaid. Mean NA and SA model/data NEE values for
radiation >650 W m�2 are �9.7/�10.1 and �13.8/�13.1
mmol m�2 s�1, respectively. For moderate radiation values
between 300 and 650 W m�2 the resulting NA and SA
model/data NEE means are �8.5/�6.7 and �14.9/�7.3,
respectively. Finally, for radiation <300 W m�2 the NA and
SA model/data NEE mean values are 0.2/2.8 and �4.2/2.3
mmol m�2 s�1, respectively.

Figure 4. Observed (solid) and modeled (shaded, sampled
from the grid cells including the towers) CO2 anomalies
(ppm) versus radiation (W m�2). (top) NA results and
(bottom) SA results. The anomalies are calculated by
subtracting the mean CO2 concentration over each case
from the corresponding series. Mean NA and SA model/
data CO2 values for radiation >650 W m�2 are �1.6/�1.1
and �4.3/�3.1 ppm, respectively. For moderate radiation
values between 300 and 650 W m�2 the resulting NA and
SA model/data CO2 mean anomalies are 3.5/1.6 and �2.9/
�4.0 ppm, respectively. Finally, for radiation <300 W m�2

the NA and SA model/data CO2 mean values are �0.4/�0.2
and 0.7/1.9 ppm, respectively.
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primarily clear, 5 d are partly cloudy, and 2 d are overcast.
Over SA, 6 d are completely clear and 9 d are partly cloudy.

3. Results

3.1. Total Column CO2 Concentrations

[24] In the NA simulation, the main driver of total column
CO2 temporal variability is synoptic-scale systems
(Figure 5). A Fourier analysis of the CO2 concentrations
reveals a significant spectral peak at �3.5 d (at the 95%
confidence level using an F test), which indicates the
dominant timescale of variability is the fronts in the simu-
lation. The diurnal cycle also has a significant spectral peak,
although it is much smaller. Rather than displaying a strong
diurnal cycle, the simulated total column concentration
sampled from the grid cell that includes the WLEF tower
has three spikes associated with the three frontal passages.
The column CO2 range is �6 ppm and the standard
deviation is �1 ppm. The fronts, which are associated with
clouds, advect high concentrations from the southwest,
where a heat wave reduces carbon uptake causing high
CO2 anomalies [Wang et al., 2007]. The lowest concen-
trations during the simulation occur in clear conditions,
when the main influence on CO2 is the local vegetation
rather than advection.
[25] The NA total column CO2 spatial variability is also

predominantly affected by the weather via the frontal
passages. The range of column CO2 at 1300 LST over the
fine grid column varies from 0.2 to 1.8 ppm, with an
average of 0.8 ppm (Table 1). Over the coarse grid column,
the CO2 range at 1300 LST varies from 1 ppm to 13.7 ppm,
with an average range of 3.5 ppm across the domain and a
mean standard deviation of 0.6 ppm. Although the surface
heterogeneity of the coarse domain contributes to increased
CO2 variability, the greatest concentration ranges occur
when the southwestern portion of the domain has high
concentrations from advection while the northeastern half
of the domain has low concentrations. Optically thick
clouds that are associated with the fronts contribute to

higher concentrations by reducing photosynthesis due to
light limitation.
[26] Ground-based measurements of total column CO2

are being made at the WLEF tall tower site [Washenfelder et
al., 2006]. The observatory utilizes a similar technique as
OCO, GOSAT, and SCIAMACHY to measure XCO2 using
an upward looking Fourier Transform Spectrometer (FTS).
The observatory has been measuring XCO2 since May 2004.
At WLEF, XCO2 is minimally influenced by the diurnal
rectifier effect. Washenfelder et al. [2006] present results
from a validation study involving aircraft data where
column observations were measured on five dates in July
and August of 2004. The column average concentration
varies �7 ppm between these samples, which is similar in
magnitude to the column variations seen in the SiB-RAMS
simulations due to the frontal passages. A plot of the
seasonal cycle of daytime daily averaged XCO2 shows
day-to-day variability of �6–7 ppm during the summer
[Washenfelder et al., 2006].
[27] The dominant cause of column CO2 temporal vari-

ability in SA is the diurnal cycle and mesoscale circulations
(Figure 6), since this simulation occurs in the dry season
and is characterized by steady trade winds, nocturnal
decoupling, river breezes, boundary layer cumulus clouds,
and no air masses or fronts. A power spectrum of this series
shows the only significant spectral peak is at 1 d. The
temporal CO2 variability in SA is smaller than in NA, as the
range and standard deviation of the simulated column
concentrations sampled at the Tapajos tower is only
3.1 ppm and 0.7 ppm, respectively. The amplitude of the
mean diurnal cycle is 1.1 ppm. Unlike in NA, there is no
correlation between cloud cover and mixing ratios. Since
this simulation was selected to isolate the influence of local
vegetation and circulations, the clouds are midafternoon
cumulus clouds primarily seen on the east bank of the
Tapajos River due to the low-level convergence line [Lu et
al., 2005, also submitted manuscript, 2007].
[28] Since the SA case has significant surface heteroge-

neity due to the rivers, the spatial variability in this
simulation is larger for the fine grid column compared to
the NA simulation; however, the spatial variability over the
coarse domain is smaller, which is due to the lack of
synoptic-scale features which advected high CO2 in NA.
The average total column spatial range at 1300 LST is
1.46 ppm and 2.15 ppm for the fine and coarse grid
columns, respectively (Table 1). The CO2 spatial pattern
at 1300 LST was similar for all days, with a low concen-
tration on the eastern half of the domain and higher
concentrations in the northwest corner, which is primarily
due to the topography and surface cover [Lu et al., 2005].

Table 1. Range and Standard Deviation (s) of the Simulated Grid

Columns at 1300 LSTa

Range s

Mean Max Mean Max

NA Fine 0.76 1.81 0.15 0.4
NA Coarse 3.53 13.71 0.64 1.9
SA Fine 1.46 2.1 0.4 0.53
SA Coarse 2.15 2.91 0.44 0.58

aBoth the mean values over the entire simulation and the maximum
values are displayed. Unit is ppm.

Figure 5. Simulated total column CO2 concentrations at
the WLEF tower (solid line) and the sky conditions (shaded
line), where 0 indicates clear sky and 1 indicates the tower
was cloud covered. The vertical dashed lines indicate the
three frontal passages.
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[29] The total column measurements in SiB-RAMS are
consistent with results presented by Olsen and Randerson
[2004]. Using the Model of Atmospheric Transport and
Chemistry (MATCH) three-dimensional atmospheric trans-
port model, Olsen and Randerson [2004] investigated the
total column CO2 concentrations. They found that at WLEF
the greatest variability of column CO2 was linked to
synoptic events on the order of 2 to 6 d. In order to
influence the column, CO2 flux anomalies had to accumu-
late in the lower troposphere over a period of several days or
there had to be a large-scale replacement of air in the
column. Day-to-day variations of up to �8 ppm can be
seen at the WLEF tower during the summer because of
synoptic events. Similar to SiB-RAMS, results from Olsen
and Randerson [2004] show the main driver of column CO2

variability over WLEF during the summer is synoptic-scale
systems, as midlatitude air masses with distinct CO2 con-
centrations develop in response to surface fluxes and are
separated by fronts [Parazoo, 2007].
[30] In the Amazon, modeled vertical CO2 profiles were

qualitatively similar to the observed profiles near the
surface, but did not exhibit the same degree of variability
[Olsen and Randerson, 2004]. The amplitude of the average
diurnal cycle within the Amazon basin was 0.9 ppm in July,
which is slightly weaker than the diurnal cycle from SiB-
RAMS; however, comparison of MATCH column CO2 to
column CO2 profiles from aircraft data revealed that
MATCH tended to have lower diurnal variability than
observed. In the tropics, the dominant cause of CO2

variability is the diurnal cycle because of the productive
ecosystems and the lack of synoptic-scale features.

3.2. Spatial Representativeness Errors

[31] Since satellite track widths are not the same size as
an inverse model grid column, using satellite concentrations
to optimize a grid column may introduce spatial represen-
tativeness errors into the inversion. In this study, the size of
the coarse and fine domains in both NA and SA correspond
roughly to a global model grid size. We calculated the
spatial errors that inversions would incur from using satel-
lite measurements to represent grid columns in central NA
and in the Amazon by subtracting the domain-averaged

1300 LST total column concentrations from the simulated
satellite concentrations, which use only clear-sky pixels.
The daily results are compiled into a single sampling
distribution for each domain and location (Figure 7). The
mean and standard deviation of the sampling distributions
for the fine and coarse domains for both NA and SA are
provided in Table 2.
[32] The spatial errors for both fine grid columns are

unbiased, as the mean of the distributions are close to 0.
Over NA, all of the errors are within 0.3 ppm; however,
over SA only 13% of the simulated satellite concentrations
were within 0.3 ppm of the mean. The standard deviation
for SA is 0.2 ppm and the maximum error is �0.72 ppm.
97% of the simulated SA tracks are within 0.5 ppm, which
is only half of the expected spectroscopic retrieval error
[Miller et al., 2007]. The larger errors over SA are due to the
heterogeneity in that domain and cloud masking in NA,
since the greatest NA variability occurred when there were
clouds and hence no satellite retrievals. The relatively small
magnitude of the errors is due to the limited total column
CO2 variability in the domains.
[33] The errors that would be introduced into inversions

that use satellite measurements to represent coarse grid
columns are larger than the errors for a fine grid column,
which is not surprising since the total column CO2 is more
variable. The spatial errors over SA remain unbiased and
have a standard deviation similar to that of the fine domain.
95% of the satellite tracks capture the domain mean within
0.5 ppm. The errors for the NA coarse domain are much
larger and negatively biased, with a mean of �0.13 ppm and
a standard deviation of 0.43 ppm. Although nearly 25% of
the tracks are within 0.1 of the mean, 18% of the tracks have
errors larger than 0.5 ppm and 6% of the tracks have errors
larger than 1 ppm, which is larger than the expected
retrieval error. The large and negatively biased spatial errors
are due to the large gradients of CO2 due to the frontal
passages and the cloud masking of the higher concentrations
associated with the fronts.

3.3. Local Clear-Sky Errors

[34] We define local clear-sky errors as errors that are
introduced into inversions that use clear-sky satellite con-
centrations to represent a transport model grid column that
includes clouds. These errors are calculated by subtracting
the simulated satellite concentrations at 1300 LST using all
pixels from the simulated satellite concentrations using only
clear-sky pixels. The resulting errors are smaller than the
retrieval error and are unbiased for the fine domains

Figure 6. Simulated total column CO2 concentrations at
the Tapajos tower (solid line) and the modeled sky
conditions (shaded line), where 0 indicates clear sky and
1 indicates the tower was cloud covered.

Table 2. Mean (m) and Standard Deviation (s) of the Sampling

Distributions of the Spatial Representation Errors, the Local Clear-

Sky Errors, the Diurnal Sampling Errors, and the Temporal

Sampling Errors for All Four Casesa

Spatial
Local Clear-

Sky Diurnal Temporal

m s m s m s m s

NA fine �0.01 0.06 �0.02 0.06 �0.19 0.33 �0.44 0.31
NA coarse �0.13 0.43 �0.12 0.51 �0.25 0.51 �0.42 0.5
SA fine �0.04 0.21 �0.04 0.18 0.1 0.26 0.06 0.66
SA coarse �0.04 0.24 �0.03 0.19 0 0.25 �0.01 0.64

aUnit is ppm.
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(Figure 8). All the NA satellite tracks over the fine grid
column that only use clear-sky footprints capture the true
mean track value within 0.3 ppm. For the SA case, the
standard deviation is larger and 87% of the tracks are within
0.3 ppm of the true mean. The largest error is 0.7 ppm. The
SA coarse domain errors are very similar to the errors in the
fine domain, with 85% of the errors less than 0.3 ppm. The
similarity between the fine and coarse sampling distribu-
tions indicates that differences in carbon uptake due to local
cloud cover has a minimal impact on the concentration at a
single snapshot in time. The local clear-sky errors over the
NA coarse grid column are negatively biased with a
sampling distribution mean of �0.12 ppm. The negative
bias is due to a few tracks that have large negative errors.
Although 80% of the simulated satellite concentrations
using only clear footprints have errors less than 0.3 ppm,
3% of the tracks have errors greater than 1 ppm, with errors
as large as 4 ppm. Similar to the spatial errors, large and
negatively biased local clear-sky errors are due to cloud
masking of high frontal CO2.
[35] To further examine the clear-sky errors, we analyzed

local clear minus all-sky differences in net ecosystem
exchange (NEE), which were calculated in a similar manner
by subtracting the mean NEE value in a satellite track

containing all pixels from the corresponding satellite track
NEE mean utilizing only clear-sky pixels. The resulting
errors are very small (<1 mmol m�2 s�1). For the fine
domains, the errors are shifted toward enhanced uptake in
clear conditions due to reduced photosynthesis under
clouds; however, the errors in the coarse domains are
symmetrical about 0. Since the clear-sky NEE errors are
small, their effect on the column CO2 concentration is
minimal, indicating that the main driver of the large errors
seen in the clear-sky CO2 is the organization of regional
CO2 gradients along frontal boundaries, which are masked
by large-scale cloud systems and not observed by satellites.

3.4. Temporal Sampling Errors

[36] Temporal sampling errors can occur in inversions
that use satellite concentrations to optimize temporally
averaged concentrations in the model. We calculated tem-
poral errors that arise from using satellite measurements to
represent diurnal averages and bimonthly averages.
3.4.1. Diurnal Sampling Errors
[37] To calculate the diurnal errors, we subtracted the

domain average diurnal mean (0000 UT to 0000 UT) from
the simulated 1300 LST satellite tracks (Figure 9). All the
standard deviations for the diurnal errors are larger than the
standard deviations seen for both spatial and local clear-sky
errors. Over SA, the mean of the sampling distribution is
positively biased by a tenth of a ppm, and the entire
distribution is positively shifted, indicating that on a fine

Figure 7. Sampling distributions of the spatial representa-
tiveness errors in NA (solid) and SA (shaded) at 1300 LST
compiled from all days of the simulations. The x axis is the
difference between the simulated satellite concentration and
the domain mean concentration, and the y axis is the number
of satellite tracks that correspond to each difference.
Negative values indicate an underestimation by the
simulated satellite measurements and positive values
indicate an overestimation. (top) Results from the fine grid
columns and (bottom) distribution of the errors from the
coarse grid columns.

Figure 8. Local clear-sky total column CO2 errors for NA
(solid) and SA (shaded), which are the differences between
the simulated satellite concentrations at 1300 LST using
only clear-sky pixels and the simulated satellite concentra-
tions at the same time using all the pixels in the satellite
track. (top) Errors from the fine grid and (bottom) results
from the coarse grid.
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domain satellite concentrations at 1300 LST are slightly
higher than the domain mean. 94% of the simulated satellite
tracks have errors less than 0.5 ppm, and all the tracks have
representation errors less than the expected retrieval error.
For the SA coarse grid column, the diurnal errors are
unbiased, the sampling distribution is symmetric about 0,
and 95% of the errors are less than 0.5 ppm. The errors
indicate that, in the absence of synoptic systems, 1300 LST
satellite measurements over productive ecosystems are
generally within 0.5 ppm of the diurnal mean and actually
become less biased as the domain size increases. This result
is similar to results from Olsen and Randerson [2004] and
Miller et al. [2007] that indicate that column measurements
over productive ecosystems have a diurnal maximum in the
early morning, a minimum in the late afternoon, and are
near the diurnal mean at 1300 LST.
[38] The diurnal sampling errors for NA are negatively

biased by �0.2 ppm for both the coarse and the fine grid
columns, indicating that sampling at 1300 LST underesti-
mates the diurnal average for this case. Over the fine
domain, 85% of the tracks capture the diurnal average
within 0.5 ppm. The remaining tracks underestimate the
mean by �1 ppm. Since the total column concentration over
the domain is driven by synoptic variability associated with
cloud cover rather than the diurnal cycle due to vegetation,
the large errors are idiosyncratic, resulting both from clouds
masking the high concentrations and the timing of the
fronts. The bias and standard deviations on the NA coarse
domain is even larger. Rather than having a small subset of
tracks underestimating the diurnal mean, the distribution is

negatively shifted. Only 65% of the tracks have errors less
than 0.5 ppm, indicating that over regions that have large
synoptic variability the diurnal mean is not well sampled
with a clear-sky satellite measurement taken at a single
snapshot in time.
3.4.2. Bimonthly Sampling Errors
[39] We calculated temporal sampling errors that arise

from comparing satellite concentrations to a domain average
bimonthly mean by subtracting the domain-averaged CO2

mean for the entire simulation from the 1300 LST satellite
tracks (Figure 10). These errors are very large for all cases,
as evidenced by the large standard deviations. The errors are
biased by �0.4 ppm over NA. The NA sampling distribu-
tions for both the fine and coarse domain are negatively
shifted, showing that the clear-sky simulated satellite con-
centrations systematically underestimate the temporal aver-
age. Over the both domains in NA only �50% of the tracks
had errors less than 0.5 ppm. The large positive errors seen
by a few tracks in the large domain is a result of the satellite
concentrations sampled on 15 August, as a few pixels in the
northwest corner of the domain were clear just prior to the
frontal passage as the CO2 concentration was increasing.
Sampling between clouds enabled the satellite to observe
higher concentrations associated with the front, but the front
caused such a large anomaly in column CO2 that the
concentrations were actually higher than the domain-aver-
aged temporal mean. At synoptic scales, horizontal and
vertical mixing work together to cause these strong CO2

variations along cold fronts [Parazoo, 2007]. Since synoptic
weather patterns can carry large CO2 anomalies and since

Figure 9. Diurnal sampling errors for NA (solid) and SA
(shaded), which are the differences between the simulated
satellite concentrations from each track using only clear-sky
pixels and the diurnal mean CO2 concentration from the
entire domain, from 0000 to 0000 UT.

Figure 10. Temporal sampling errors for NA (solid) and
SA (shaded), which are the differences between the
simulated satellite concentrations from each track using
only clear-sky pixels and the 10-d domain average. (top)
Fine grid column and (bottom) coarse grid column results.
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these weather disturbances and frontal passages are associ-
ated with clouds, clear-sky satellite measurements have
large errors compared to temporal averages over regions
with synoptic variability.
[40] Over SA the standard deviation is also large for

bimonthly errors; however, the sampling distributions are
unbiased. Even in a case driven by local vegetation and
circulation, a substantial number of simulated satellite tracks
have errors larger than 1 ppm. On the fine domain, only
40% of the tracks have errors less than 0.5 ppm, and only
45% of the simulated satellite concentrations have errors
less than 0.5 ppm on the coarse domain. The large errors
indicate that even in conditions dominated by local fluxes
and circulation patterns, clear-sky satellite measurements
sampled at 1300 LST cannot represent bimonthly temporal
averages without a substantial chance of introducing large
errors.

4. Conclusions

[41] Using a coupled ecosystem-atmosphere cloud-re-
solving model, we investigated sampling errors that may
be introduced into inversions that use satellite retrievals of
total column CO2 in clear conditions. We performed two
simulations: one over the midcontinental United States and
one in the Brazilian Amazon. The main driver of column
CO2 variability in the NA case was synoptic systems
associated with cloud cover, while the source of CO2

variability in SA was the diurnal cycle and mesoscale
circulations.
[42] Spatial representation errors were unbiased and less

than 0.5 ppm for a 100 � 100 km domain; however, the
errors increased in the NA case when a single satellite track
was used to represent a coarse (450 � 450 km) grid column.
The local clear-sky errors exhibited the same patterns as the
spatial errors: the majority of the errors were <0.3 ppm for a
100 � 100 km domain, but the errors became negatively
biased and large (>2 ppm) for the coarse grid column of the
NA simulation. Both the spatial and local clear-sky errors
did not increase over the coarse SA grid column, where the
variability was due to surface heterogeneity and local
circulations. The main cause of large and biased spatial
and clear-sky errors was not surface heterogeneity but rather
synoptic systems associated with cloud cover. CO2 obser-
vations across North America showed large day-to-day CO2

variations associated with passing weather disturbances
manifested as surface cold fronts [Parazoo, 2007]. Parazoo
[2007] found that although ecosystem response to frontal
weather played a role, the majority of the CO2 variations
(70–90%) along fronts was due to horizontal and vertical
mixing. Resulting strong coherent CO2 patterns were then
transported across the continent by horizontal advection.
Since frontal systems create large gradients of CO2 that are
masked by clouds and cannot be sampled, inversions that
use satellite measurements to represent coarse regions may
incur large and biased spatial and local clear-sky errors. As
inversions are influenced by a bias as small as a tenth of a
ppm in the total column [Chevallier et al., 2007; Miller et
al., 2007], satellite concentrations cannot be used to repre-
sent large regions with significant CO2 variability due to
synoptic systems. Our analysis suggests that transport

models should be run at high resolution to avoid introducing
biases.
[43] Using satellite measurements to represent bimonthly

temporal averages created large and biased errors. Even in a
location where the main temporal variability was due to the
diurnal cycle and local circulations, the bimonthly errors
were larger than the expected retrieval error. Over NA, the
errors were substantially negatively biased (approximately
�0.4 ppm) for both a fine and coarse grid column. Frontal
systems that created CO2 gradients and that could not be
sampled because of cloud cover caused not only errors
larger than the expected spectroscopic retrieval error, but
sampling biases. Since sampling biases are harmful to
inversions, satellite measurements cannot be used to repre-
sent temporal averages. As our case study chose the
synoptic event with the strongest CO2 signal, the errors
presented here are likely maximum error estimates;
however, it is likely that biases will exist for all synoptic
systems that are associated with clouds. In addition, the
model overestimated the photosynthetic uptake for moder-
ate radiation values, which could cause the role of large-
scale advection relative to local changes in carbon flux to be
overestimated. However, decreasing the uptake would in-
crease the concentrations in cloudy conditions not visible by
the satellite and would thus increase the negative bias in
NA, making the results presented here robust despite this
model deficiency.
[44] Systematic variations of CO2 along midlatitude

fronts makes model transport a priority. The model and
the atmosphere must be sampled consistently, and observa-
tion operators in inversions must be accurate, including
precise modeling of winds, clouds, fronts, and frontal
timing. To avoid temporal sampling errors and biases,
atmospheric transport must be modeled accurately and
satellite mixing ratios must be used to optimize modeled
concentrations sampled at the same time.
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Foz do Iguaçu, Brazil.

Gerbig, C., J. C. Lin, S. C. Wofsy, B. C. Daube, A. E. Andrews, B. B.
Stephens, P. S. Bakwin, and C. A. Grainger (2003), Toward constraining
regional-scale fluxes of CO2 with atmospheric observations over a con-
tinent: 1. Observed spatial variability from airborne platforms, J. Geo-
phys. Res., 108(D24), 4756, doi:10.1029/2002JD003018.

Gurney, K. R., et al. (2002), Towards robust regional estimates of CO2

sources and sinks using atmospheric transport models, Nature, 415,
626–630.

Gurney, K. R., et al. (2003), TransCom 3 CO2 inversion intercomparison:
1. Annual mean control results and sensitivity to transport and prior flux
information, Tellus, Ser. B, 55, 555–579.

Hansen, M., R. DeFries, J. R. G. Townshend, and R. Sohlberg (2000),
Global land cover classification at 1 km resolution using a decision tree
classifier, Int. J. Remote Sens., 21, 1331–1365.

Harrington, J. Y. (1997), The effects of radiative and microphysical pro-
cesses on simulated warm and transition season Arctic stratus, Atmos. Sci.
Pap. 637, 289 pp., Dep. of Atmos. Sci., Colo. State Univ., Fort Collins,
Colo.

Houweling, S., F. M. Breon, I. Aben, C. Rödenbeck, M. Gloor,
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