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[1] This paper explores various sources of error in atmospheric CO2 synthesis inversions
using global circulation models. The estimation of prior, observation, model transport, and
representation errors is described, and the latter two error sources are explored in more
detail. Not accounting for these errors will act as a hard constraint on the inversion and
will produce incorrect solutions to the problem as is shown in some example inversions.
The magnitude of these errors falls generally between about 10% and 100% in the
retrieved fluxes but can be even larger. This makes it highly desirable to avoid hard
constraints and apply any prior information we have about the surface fluxes as a weak
constraint to the inversion problem. INDEX TERMS: 0315 Atmospheric Composition and
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1. Introduction

[2] Spatial and temporal variations of atmospheric CO2

concentration contain information about sources and sinks,
which may be quantitatively interpreted using inverse
modeling of tracer transport [e.g., Tans et al., 1990; Enting
et al., 1995; Rayner et al., 1999; Gurney et al., 2002].
Synthesis inversion involves the forward simulation of the
concentration response to unit amounts of emissions from
specified regions and times, using an atmospheric tracer
transport model. Linear combinations of these response
functions are then combined to produce optimal agreement
with measured concentrations, typically using least squares
methods [e.g., Enting, 2002].
[3] We refer to the set of locations and times of unit

emissions that are scaled by the inversion as ‘‘basis func-
tions.’’ The methodology adopted for the Atmospheric CO2

Inversion Intercomparison Project (TransCom3) is typical of
recent inversion studies: it sought to optimize source/sink
magnitudes from 22 regions and 12 months of an average
year [Gurney et al., 2000]. Figure 1 shows these 22 regions
with the prescribed flux patterns within two of those regions
as insets.
[4] Unfortunately, the current observing network is very

sparse, consisting primarily of weekly samples taken in

remote marine locations, and response functions arising
from emissions at the various regions and times can be
used in different combinations to match the same set of
observations. Given this ill-conditioning, strict optimization
of the source/sink strengths in inverse models tends to
produce dipoles in poorly observed regions with magni-
tudes that are completely unrealistic. A 12 Gt C yr�1 source
in Africa, for example, might be paired with a 13 Gt C yr�1

sink in South America and produce the best agreement with
observed concentrations, yet we know that such fluxes are
wildly unrealistic.
[5] To avoid such pitfalls arising from weak data con-

straints, most inversion studies have relied on ‘‘regulariza-
tion’’ techniques. These include truncation of the dimensions
of the problem to estimate fluxes from only a few large
regions or time averages [e.g., Fan et al., 1998], numerical
truncation using singular value decomposition [Baker,
2001], and the use of ‘‘prior constraints’’ in a Bayesian
framework [e.g., Tarantola, 1987] to penalize solutions
which produce unreasonable values [Rayner et al., 1999;
Bousquet et al., 2000; Gurney et al., 2002]. The inversion
formalism commonly used propagates the uncertainty in
these prior constraints through the calculation, balancing it
against uncertainty in the measurements to obtain the opti-
mized solution.
[6] A recent paper by Kaminski et al. [2001] (hereinafter

referred to as Kam2001) demonstrated that regularizing the
solution by spatial truncating (lumping) small basis regions
into larger combined ones introduces error. This ‘‘aggrega-
tion error’’ was shown to arise because the observed and
simulated concentration field may be sensitive to the spatial
distribution of sources and sinks within large regions, but
the inversion is not free to adjust these subregional patterns.
Unlike the Bayesian priors, subregional patterns are typi-

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D22, 4635, doi:10.1029/2002JD002195, 2002

1Now at ECMWF, Shinfield Park, Reading, UK.
2K. R. Gurney, R. M. Law, A. S. Denning, P. J. Rayner, D. Baker, P.

Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan, I. Y. Fung, M.
Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K.
Masarie, P. Peylin, M. Prather, B. C. Pak, J. Sarmiento, S. Taguchi, T.
Takahashi, and C.-W. Yuen.

Copyright 2002 by the American Geophysical Union.
0148-0227/02/2002JD002195$09.00

ACL 10 - 1



cally prescribed in inversions as a ‘‘hard constraint.’’ Errors
in these patterns cannot be corrected by the inversion
procedure, and the resulting error is unavoidably aliased
into the resolved sources and sinks. This is not a problem if
the pattern of fluxes is correctly known a priori, but in
general these patterns cannot be evaluated. To avoid intro-
ducing bias in optimized fluxes, Kam2001 recommend
using an algorithm that calculates the impact of these errors
on the simulated observations used in the inversion. This
allows, according to Kam2001, proper accounting for these
errors. We will show later that is only partly true. General
discussions about the use of hard and weak constraints in
inversion problems are given by Wunsch [1996] and Rodg-
ers [2000].
[7] There are a number of other hard constraints used in

most inversion studies, besides the subregional spatial
distribution of fluxes associated with each basis function.
The temporal phasing of the fluxes (seasonal and diurnal
cycles, for example) is often specified and cannot be
adjusted by the inversion [Fan et al., 1998]. The simulated
transport in a given model introduces unavoidable error and
similarly cannot be adjusted. Fluxes due to ‘‘background’’
processes such as fossil fuel combustion, air–sea gas
exchanges, and purely seasonal exchange with the terrestrial
biosphere (rectifier effects) are similarly often prescribed as
hard constraints in recent inversions [Gurney et al., 2002].
In each of these cases, error in the specified hard constraints
is unavoidably aliased into the resolved fluxes.
[8] In this paper we explore the various sources of error

present in CO2 inversions, and estimate their magnitudes.
We investigate the effects of each of the hard constraints on
the optimized fluxes and their errors. In section 2, we
present the theoretical framework and define several sources

of error. In section 3, we consider the effects of transport
error, and in section 4 we explore the impact of representa-
tion errors. Finally, in section 5 we present conclusions.

2. Inversion Theory and Error Sources

2.1. General

[9] To estimate surface fluxes s from observational data
d, given a prior estimate of the surface fluxes s0, we
minimize the following cost function:

� ¼ Gs� d½ �TC dð Þ�1
Gs� d½ � þ s� s0½ �TC s0ð Þ�1

s� s0½ � ð1Þ

where G is the Jacobian of the transport model, which maps
the surface fluxes to the data and which is often referred to
as the response functions of the transport model, and C(s0)
is the prior covariance matrix that describes the uncertainty
in our prior estimate of the surface fluxes. C(d) is the
covariance matrix describing the expected difference
between the observational data and the model simulations,
which includes several error sources besides the observation
error:

C dð Þ ¼ OþMþ Tþ F ð2Þ

where O is the observation error covariance describing the
errors in the observations (calibration, etc.), M is the
mapping error covariance describing the errors in mapping
CO2 concentrations at a specific location into the measured
quantity (e.g., satellite radiances), T is the model transport
error covariance describing the errors in mapping the fluxes
into CO2 concentrations at the various observational sites,

Figure 1. Map of the 22 basis regions used in the TransCom3 experiment. The two inserts show the
basis functions on a 0.5� � 0.5� grid for the Temperate North American and the South African basis
regions.
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and F is the representation error covariance describing the
effects of model resolution. Minimizing the cost function in
equation (1) provides the following solution:

ŝ ¼ GTC dð Þ�1
Gþ C s0ð Þ�1

h i�1

GTC dð Þ�1
dþ C s0ð Þ�1

s0

h i
ð3Þ

Because the solution ðŝÞ in our Bayesian setup is a weighted
average of the prior estimate and the observations weighted
by the respective covariance matrices, it is crucial to have a
good understanding of the errors represented by the
covariance matrices in order to obtain the most optimal
solution. Using inaccurate covariance matrices can lead to
nonoptimal solutions or in some cases even to spurious
solutions due to mathematical oscillations in the solution. In
the following subsections we will discuss each of the error
covariance matrices in more detail. The assumptions we will
make are that the errors contain no biases and that the four
error sources forming C(d) are uncorrelated. The latter
assumption, however, is not strictly valid, because both the
model transport error and the representation error depend on
the surface flux distribution as will be shown in the next
sections. The assumption, therefore, is that the cross
correlations between these error sources are much smaller
than the individual error covariances describing these error
sources. The validation of this assumption is beyond the
scope of this paper and will be subject of further study.

2.2. Prior Error

[10] Prior constraint on source strengths is needed to
avoid unrealistic solutions that arise because of poor data
coverage over much of the world and the ill-conditioned
nature of the inversion problem. These prior constraints
include both the global mass balance of atmospheric CO2

(known very accurately from the flask record) and estimates
of fluxes from each of the regions and months for which
fluxes are sought (generally known only poorly). These
variable uncertainties are expressed by the prior source
covariance matrix (C(s0)). Typical recent inversion calcu-
lations have used zero as a prior source estimate for each
basis region, with or without a ‘‘background’’ or presub-
tracted field derived from some combination of direct
measurement, models, or satellite observations. In the
TransCom3 experiment, background fluxes due to fossil
fuel emissions (from economic data) [Andres et al., 1996],
seasonal exchange with a balanced terrestrial biosphere
(using a model driven by observed climate and satellite
vegetation data) [Randerson et al., 1997], and air–sea
fluxes (interpolated from millions of in situ measurements)
[Takahashi et al., 1999] were prescribed a priori. Prior
uncertainty in each of these presubtracted fields was
assumed to be very small, partly because the fluxes are
known rather well relative to other parts of the problem, and
partly because corrections to these fields are made in each
of the 22 basis regions. Also, neither the neutral biosphere
nor the air–sea flux is positive definite, changing signs both
over the spatial domain and at given locations through the
year. Thus it is not appropriate to simply scale them in the
inversion since substantial cancellation would result. Prior
estimates of regional fluxes are typically set to zero, with
generous prior error estimates to allow the solution to be
data driven but still prevent spurious dipoles. For annual

mean inversions in the TransCom3 experiment, most
regions were assumed to have zero fluxes, but some land
use information was also applied [Gurney et al., 2002].
Prior uncertainty estimates in the oceans were set according
to the density of observations used to construct the back-
ground flux field [Takahashi et al., 1999]. Prior uncertainty
on land was set equal to the growing season net flux (sum of
all monthly background fluxes during the period when the
region is a net sink).

2.3. Observation and Mapping Error

[11] The observation error (O) is in general easily quan-
tifiable by careful calibration of the instruments. Correla-
tions between measurement errors are usually set to zero,
allowing the use of a diagonal matrix for the covariance
matrix. Analytical error in CO2 mole fraction is assessed by
calibration and analysis of samples of known quantity in
blind tests. This source of error is small, generally within
0.05 ppmv [Masarie et al., 2001]. Other important sources
of direct observation error are introduced by sample collec-
tion processing equipment, and by the fact that interlabor-
atory calibrations across the network are difficult to
maintain. The latter source of error is likely the most
significant, and is regularly assessed by round robin com-
parisons of analyses of common flask samples by multiple
laboratories. Interlaboratory differences are believed to
contribute at least 0.2 ppmv uncertainty in measured mole
fraction [World Meteorological Organisation (WMO), 1995,
1999].
[12] When we include any remote observations of CO2 in

the inversion, we need to include the mapping error cova-
riance M. It describes the error caused by retrieving a CO2

concentration from an indirect observation (e.g., satellite
observed radiances). In its simplest form it is just the
retrieved CO2 uncertainty, comparable to the observation
error covariance O. However, if the indirect observations
are used directly in the inversion, this covariance matrix
describes the errors in the mapping operator (e.g., a forward
radiative transfer model). The first form would come
directly from a CO2 retrieval algorithm, the second form
would have to be estimated by comparing the used mapping
operator to similar or better mapping operators (e.g., a fast
radiative transfer model could be compared to a line-by-line
radiative transfer model). A possibly serious error arises
when the observation errors are correlated in space and/or
time. For instance, satellite observations could be dependent
on the surface albedo. If we do not know this surface albedo
accurately, the retrieved CO2 concentrations over land could
be biased with respect to the retrieved CO2 concentrations
over ocean. These regional biases can introduce error in the
retrieved fluxes, since they create nonexistent spatial gra-
dients. It is therefore crucial to be aware of any biases in the
observations.

2.4. Transport Error

[13] The transport error (T) is a very important contrib-
utor to the overall error budget of CO2 inversions, whose
importance is likely to be amplified as additional observa-
tions become available [Denning et al., 2001]. It can be split
up into two components: the transport model error and the
transport model parameter error. The first error represents
any simplification of the real physics and dynamics in the
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transport model (e.g., convective parameterizations) and is
defined as

�G 	 g s; b; b0ð Þ � G s; bð Þ ð4Þ

where g(s, b) represents the real world dynamics and G the
model formulation. The real surface fluxes are denoted by s
and all other variables that influence the CO2 concentrations
at the observation sites are denoted by b and b0 (e.g.,
horizontal winds, vertical diffusion). The difference be-
tween b and b0 is that b consists of variables that are
actually modeled, while b0 are the variables that are ignored
in the transport model. �G therefore represents the error in
the simulated observations that is made by using simplified
physics to model the real world. As noted earlier it depends
on the surface flux distribution. This transport model error
tends to be systematic and is generally hard to estimate,
since we can not exactly model the real world dynamics and
physics (g). However, comparisons with high resolution
transport models (e.g., numerical weather forecast models)
can give an estimate of this bias.
[14] The second error (transport model parameter error)

represents the effect of errors on any model parameter and is
defined as

T ¼ KbC bð ÞKT
b ð5Þ

where K = @G/@b and C(b) = e{(b̂ � b)(b̂ � b)T}, where e
is the expectation operator and b̂ is our estimate of the
variables b. A first attempt to estimate this error will be
described in section 3.

2.5. Representation Error

[15] We define two types of representation error involved
in CO2 inversions, the internal and external representation
error. The internal representation error describes the errors
that arise when we perform the CO2 model inversion on a
different grid (both space and time) than the transport model
grid. This inversion grid can be just an aggregation of grid
boxes, but is more commonly a representation of the surface
fluxes on large basis regions [e.g., Gurney et al., 2002]. The
error represents the mismatch in resolution between the
forward model calculations to obtain the transport operator
G (e.g., 72 � 44 grid boxes on 30 min time intervals) and
the inversion performed on the monthly means of for
instance 22 basis regions. It was this source of error that
was investigated by Kam2001, and termed aggregation
error. Since this is a complicated but important error source,
we will describe this error source in more detail in section 4.
[16] The external representation error involves mis-

matches between the model simulation and the observa-
tions, in both space and time. Flask samples are taken from
a continuously varying concentration field, and are influ-
enced by many factors not present in the transport models
used for typical inversions. External representation error
includes spatial variations at scales smaller than the model
grid boxes, and time variations at scales shorter than the
sampling frequency of the observations. Many inversions
optimize simulated monthly mean concentrations over areas
as large as 105 km2 through depths of up to 1 km against
point samples taken at the surface once a week, for example.
External representation error may also include unresolvable

transport due to synoptic, mesoscale or local phenomena.
Local- or regional-scale emissions or sinks (for example, a
factory or power plant in a particular direction from a
sampling site) that cannot be correctly represented in a model
also lead to errors of this kind. Sampling protocols are
designed to obtain background air that is representative of
large upstream regions and as free as possible from local
influences or contamination. Conditional sampling of model
simulations to mimic these protocols may be appropriate in
some cases to reduce external representation error. Many
flask observation stations are located along coastlines, and
the sampling protocol specifies a clean air sector from which
the wind must be blowing for valid samples of background
air to be taken. An example is Point Barrow, located on the
Arctic coast of Alaska. Global models cannot resolve the
mesoscale weather and concentration gradients in such a
location, which by definition must lie at the edge of a grid
cell. Spatial interpolation between the marine grid cell to the
north and the land grid cell to the south would necessarily
introduce just the kind of local terrestrial influence that the
sampling protocol attempts to prevent. An alternative is to
track these influences in the model, by simulating a tracer
emitted only on land, such as 222Rn [Ramonet and Monfray,
1996]. Monthly means can then be computed and used in
response functions during only those clean air periods when
the 222Rn concentration was below some threshold. Several
studies have assessed the impact of sampling the model
output to better reflect the conditions of sample collection
[Ramonet and Monfray, 1996; Law, 1996]. The impacts on
estimated fluxes by inversion can be substantial when
compared with results using simulated concentrations in
land grid cells to represent baseline conditions, but are small
compared to simply sampling an adjacent grid cell offshore
[e.g., Gurney et al., 2002].

3. Transport Model Error Estimation

[17] Current inversion analyses have employed a spectrum
of transport models, from simple off-line advection and
mixing algorithms to full-blown atmospheric GCMs. Offline
models are computationally efficient, and can be driven by
analyzed winds and so have some chance of capturing actual
variations in transport for real periods of time. However,
analyzed weather products typically do not include vertical
transports by parameterized convection and other subgrid-
scale processes, so they are reconstructed by the tracer model
using parameterizations that are not consistent with the parent
analysis. Also, analyzed weather is typically only archived
four times daily, so substantial aliasing of diurnal effects on
cloudiness, boundary layer mixing, and other phenomena is
unavoidable. Online calculations using full climate GCMs
are fully self-consistent, but can only hope to represent the
transport climatology of the atmosphere and will not capture
actual variations in circulation on synoptic or even interan-
nual timescales. An ideal solution might be to carry out CO2

inversions using online tracer transport in numerical weather
forecast and analysis systems, with the full model physics,
but this has not yet been attempted due to computational and
logistical considerations. It is also not obvious how to
constrain the model CO2 simulations within the relatively
short assimilation windows currently used with the available
observations.
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[18] Detailed comparisons of the response functions of
leading transport models used in CO2 inversions found
substantial differences [Law et al., 1996; Denning et al.,
1999b] that affect inversion results [Gurney et al., 2002].
Many models are able to reproduce the major features of the
observed spatial structure of well-observed tracers in the
remote marine boundary layer, yet exhibit qualitative dis-
agreement aloft and in continental interiors where observa-
tions are scarce. Many problems are related to differences in
the degree of vertical mixing among models, as well as
differences in resolved advection. A particularly thorny
problem is the representation of diurnal and seasonal
changes in ventilation and boundary layer mixing, because
it is highly correlated with surface CO2 exchange over many
land regions [Denning et al., 1995]. In the TransCom3
inversions, differences among models in the strength of this
rectifier effect accounted for large differences in retrieved
fluxes over the northern continents and errors of similar
magnitude in poorly observed regions elsewhere required
for global mass balance.
[19] In an attempt to estimate the transport model

covariance matrix we compared forward model calcula-
tions from 16 different transport models from the Trans-
Com3 experiment [Gurney et al., 2002]. By calculating the
intermodel simulated observation variability using the
same surface fluxes in all the models we get an estimate
of the diagonal elements of the model error covariance
matrix:

s2T ¼ 1

16

X16
i¼1

Gi s; bð Þ � Gi s; bð Þ
� �2

ð6Þ

This estimate will be too large for some models and too
small for other models, but it at least accounts for some of
the transport error.

[20] To illustrate the effect of the model error we per-
formed an inversion identical to the TransCom3 experiment,
except we included the above estimated transport error. The
model inversions in the original intercomparison were all
performed assuming perfect transport. Table 1 shows the
mean retrieved surface fluxes for the 22 regions and the
standard deviations among the models for the original
TransCom3 experiment (‘‘Without Model Error’’) and for
the case in which the estimated transport error has been
included (‘‘With Model Error’’).
[21] The table shows that the standard deviation between

the models diminishes, because the inversions are weighted
more to the prior flux estimates. The mean fluxes, however,
show significant changes as shown in the last column of
Table 1. It is therefore important to account for the model
error in the inversions. Otherwise, incorrect transport will
drive the solution to the incorrect answer.

4. Internal Representation Error Estimation

4.1. Theory

[22] As noted above the internal representation error
arises when the CO2 model inversion is performed at lower
spatial and/or time resolution than the forward model
calculations. In the currently standard CO2 inversions the
transport operator G is for instance calculated with a GCM
on a 72 � 44 horizontal grid at 30 min time steps. However,
the inversion itself is done on 22 basis regions using annual
mean values [e.g., Gurney et al., 2002]. This transformation
from a relatively high resolution forward model grid to a
low resolution inversion grid causes a loss of information,
which translates in an extra error source.
[23] This loss of information is illustrated by defining the

operator B:

s ¼ Ba ð7Þ

Table 1. Transport Model Error Effect

Model mean flux Model standard deviation

Difference
[%]Source region

Without
model error
[Gt C yr�1]

With
model error
[Gt C yr�1]

Without
model error
[Gt C yr�1]

With
model error
[Gt C yr�1]

Boreal North America 0.26 0.21 0.27 0.25 �18.7
Temperate North America �0.83 �1.11 0.42 0.35 �34.0
Tropical America 0.63 0.37 0.56 0.41 �41.9
South America �0.16 �0.19 0.38 0.30 �13.3
North Africa �0.17 �0.38 0.81 0.49 �124.7
South Africa �0.32 �0.23 0.40 0.34 26.6
Boreal Asia �0.52 �0.42 0.54 0.49 18.6
Temperate Asia �0.62 �0.62 0.58 0.44 0.9
Tropical Asia 0.68 0.75 0.44 0.30 9.7
Australasia 0.32 0.33 0.22 0.22 5.6
Europe �0.61 �0.64 0.35 0.33 �3.8
North Pacific 0.20 0.20 0.35 0.30 0.0
West Pacific �0.27 �0.15 0.24 0.12 44.3
East Pacific 0.18 0.04 0.24 0.17 �77.8
South Pacific 0.27 �0.02 0.42 0.35 �106.3
Northern Ocean 0.14 0.12 0.18 0.14 �10.6
North Atlantic �0.15 �0.11 0.30 0.20 28.7
Tropical Atlantic �0.17 �0.14 0.15 0.12 17.0
South Atlantic 0.09 0.03 0.09 0.07 �65.7
Southern Ocean 0.41 0.53 0.25 0.24 27.5
Tropical Indian Ocean �0.22 0.77 0.29 0.19 455.5
South Indian Ocean 0.22 0.19 0.20 0.14 �15.7

ENGELEN ET AL.: ATMOSPHERIC CO2 INVERSION ERRORS ACL 10 - 5



where a is a vector of amplitudes, s is the vector of surface
fluxes at transport model resolution, and B consists of the
basis functions. Equation (1) is then replaced by

� ¼ GBa� d½ �TC dð Þ�1
GBa� d½ � þ a� a0½ �TC a0ð Þ�1 a� a0½ �

ð8Þ

where GB will be calculated directly with the transport
model. These basis functions B can be thought of as
describing flux patterns within each basis region based on
prior knowledge. The basis functions also contain any
prescribed information about the time dimension of the
fluxes, such as diurnal, synoptic, and seasonal variations.
Although these time variations are at least as important as
the spatial variations, we will focus on the latter in this
section. For example, if we define North America as one of
the basis regions, one column of B would exist of zeros in
all elements that represent grid boxes outside North
America and ones in all elements that represent grid boxes
within North America. In this example the basis function
represents an average flux for North America. Or instead of
setting grid boxes within North America to one, we could
also add more detail in the form of a regional flux pattern.
The amplitudes a, on which we perform the inversion, then
define the strength of these flux patterns. It is very important
to realize that if a given flux field is represented by a, we
are only considering states of the form Ba as candidates for
retrieved flux fields! All other possible flux fields can not be
candidates for the solution. Using the example above, the
inverted fluxes in North America will all have the same
amplitude. To use the basis functions B with their
amplitudes a we also need the inverse operator B* to
transform from a general flux field s to a:

a ¼ B*s ð9Þ

This operator is used to define the prior a vector from our
priori estimate of s. B* is a pseudo inverse, which satisfies
B*B = I but not BB* = I, where I is the identity matrix.
This means that fine-scale structure in s is lost when we
transform it to a and then back to s. Disaggregation after
inversion to produce fine-scale maps of surface fluxes is
therefore not feasible or justified. To calculate B* we can
minimize the difference between the actual state s and the
interpolated fit Ba = BB*s in the simple least squares sense
providing

B* ¼ BTB
� ��1

BT ð10Þ

or in a weighted least squares sense providing

B* ¼ BTC s0ð Þ�1
B

� ��1

BTC s0ð Þ�1 ð11Þ

The weighted least squares method is preferable when we
have more confidence in some elements of s than in others.
This latter formulation was also used by Kam2001.
[24] Finally, we can describe an observation vector d as

d ¼ GBaþ �d þ �R ð12Þ

where �d is the combination of observational error and
transport error, and �R is the representation error that can be
calculated with

�R ¼ Gs�GBa

¼ Gs�GBB*s ð13Þ
¼ G I� BB*ð Þs

The prior covariance matrix has to be transformed by

C a0ð Þ ¼ B*C s0ð ÞB*T ð14Þ

[25] The purpose of the operator B is to decrease the scale
of the inversion. It is an interpolation operator. Classic
inversion theory allows for this grid conversion as long as
the error �R remains small [e.g., Rodgers, 2000]. This is
important, because the operator B acts as a hard constraint
instead of a weak constraint. A hard constraint does not
allow for any error in the specification of the prior infor-
mation (in this case the basis functions), while a weak
constraint includes the error covariance of this prior infor-
mation in the minimization process (e.g., the full prior flux
estimate vector plus its error covariance matrix) [e.g.,
Wunsch, 1996]. So, instead of using the prior knowledge
of flux patterns as a flexible weak constraint, the operator B
treats this information as an inflexible hard constraint. The
only flexibility left is the amplitude vector a with its
corresponding prior estimate and covariance as a limited
weak constraint. So, the magnitude is still flexible, but the
pattern is fixed. Whenever this pattern is not the right
pattern, biased inversion results will be obtained as we will
illustrate in the next sections.

4.2. Two-Box Example

[26] To exemplify the deficiencies of CO2 inversions on
large regions with specified basis functions, we use the
same two-box model as Kam2001 used to discuss the
aggregation error. It is based on the following transport
equations:

M

2

dc1

dt
¼ s1�M

2
kðc1 � c2Þ

M

2

dc2

dt
¼ s2�M

2
k c2 � c1ð Þ

where c1 and c2 denote the concentration in the Northern
and Southern Hemispheres, respectively [cf. Czeplak and
Junge, 1974]. The sources in the two hemispheres are
denoted by s1 and s2, M is the mass of the atmosphere
including the conversion factor from a mass mixing ratio to
a volume mixing ratio, and k is the exchange rate of air
parcels between hemispheres as a fraction of the hemi-
spheric air per time. We can describe the observations of
different stations as follows:

d ¼ Gs ð16Þ

where s represents the surface fluxes, and G is the transport
operator (similar to the operator J of Kam2001). The
observation vector d represents the change in concentration

(15)

ACL 10 - 6 ENGELEN ET AL.: ATMOSPHERIC CO2 INVERSION ERRORS



with respect to a well-mixed base state assuming constant
fluxes over a period �t. According to Kam2001 s
represented the sum of the sources and the difference of
the sources. Here, we use s just as the individual fluxes of
the two hemispheres and G can be written as follows:

G ¼

�t
M
þ 1

2Mk 1� e�2k�t
� �

�t
M
� 1

2Mk 1� e�2k�t
� �

�t
M
þ 1

2Mk 1� e�2k�t
� �

�t
M
� 1

2Mk 1� e�2k�t
� �

�t
M
� 1

2Mk 1� e�2k�t
� �

�t
M
þ 1

2Mk 1� e�2k�t
� �

0
BB@

1
CCA

¼
G1 G2

G1 G2

G2 G1

0
@

1
A ð17Þ

in the case of 2 observations in the Northern Hemisphere
and 1 observation in the Southern Hemisphere.
[27] Although the two-box examples by Kam2001 were

useful to get an understanding of the problem, they did not
show the impact of using basis functions when the problem
is underdetermined, i.e., when there are more unknowns
than observations as is the case with global inversions. To
illustrate this problem we divided the individual fluxes in
the two boxes in two separate fluxes (e.g., an anthropogenic
and a natural flux). This provides 4 unknowns with 3
observations. The G-matrix then changes into the following
4 � 3 matrix

G ¼
G1 G1 G2 G2

G1 G1 G2 G2

G2 G2 G1 G1

0
@

1
A ð18Þ

The specified surface fluxes are set to s1 = �3.5 Gt C, s2 =
�2.0 Gt C, s3 = 1.0 Gt C, and s4 = �0.5 Gt C, which
provide the following observation values: d1 = �4.6 ppmv,
d2 = �4.6 ppmv, and d3 = �0.1 ppmv. In the following
examples we performed three types of inversions: a full
inversion on all 4 fluxes using the 3 observations, a simple
inversion on the amplitude of one basis function without
accounting for the possible error (see equation (12)), and a
simple inversion on the amplitude of one basis function that
accounts for the representation error.
[28] The first example uses a prior flux guess equal to the

real surface fluxes and a basis function vector of [1, 1, 1, 1].
This means that in the simple inversions all fluxes will have
the same amplitude. Results are presented in Table 2. The
full model inversion retrieves exactly the right answer for
the individual surface fluxes and the total flux, because the

observations have no error and the prior guess is equal to
the real fluxes. Also, the predicted observations d̂1, d̂2, and
d̂3 using the inverted surface fluxes are the same as the
observations. However, the simple inversion using the basis
function provides the wrong answer for the total flux (�6.6)
when we do not correct for the representation error by
increasing the observational covariance matrix. When we do
correct for the representation error the inversion is able to
come up with almost the right answer for the total flux,
although the individual fluxes are wrong. This result was
also shown by Kam2001, although they did not use any
prior constraint. It is important to note that these errors are
caused by using a wrong basis function. If we would have
used the correct basis function, no inversion errors would
have been made.
[29] Our second example uses the simple basis function

of the first example, but now has a prior flux estimate that is
incorrect. The prior flux estimate for s1, s3, and s4 are again
equal tot the real surface fluxes, but the prior estimate of s2
is +2.0 Gt C instead of �2.0 Gt C. The results are shown in
Table 3. The full inversion is now not able to retrieve the
exact values for the individual fluxes, but still gives the
right answer for the total flux. The two simple inversions
have basically the same answers as in the first example with
some small changes due to the changed prior flux estimate,
which produces a small change in the prior basis function
amplitude estimate.
[30] The third example shows the most realistic situation,

where the prior guess is not equal to the real fluxes (as in
example 2) and where the basis function is based on this
prior flux estimate (B = [�3.5, 2.0, 1.0, �0.5]). The result
for the full inversion is the same as in example 2, as is
shown in Table 4. The results of the simple inversions,
however, have changed dramatically. Since there is no way

Table 2. Simple Basis Function: Correct Prior Fluxes (B = [1, 1,

1, 1], s0 = [�3.5, �2.0, 1.0, �0.5])

Full inversion
Uncorrected simple

inversion
Corrected simple

inversion

s1 [Gt C] �3.5 �1.6 �1.3
s2 [Gt C] �2.0 �1.6 �1.3
s3 [Gt C] 1.0 �1.6 �1.3
s4 [Gt C] �0.5 �1.6 �1.3
Stot [Gt C] �5.0 �6.6 �5.0
d̂1 [ppmv] �4.6 �3.1 �2.4
d̂2 [ppmv] �4.6 �3.1 �2.4
d̂3 [ppmv] �0.1 �3.1 �2.4

Table 3. Simple Basis Function: Incorrect Prior Fluxes (B = [1, 1,

1, 1], s0 = [�3.5, +2.0, 1.0, �0.5])

Full inversion
Uncorrected

simple inversion
Corrected

simple inversion

s1 [Gt C] �5.5 �1.6 �1.2
s2 [Gt C] 0.0 �1.6 �1.2
s3 [Gt C] 1.0 �1.6 �1.2
s4 [Gt C] �0.5 �1.6 �1.2
Stot [Gt C] �5.0 �6.5 �5.0
d̂1 [ppmv] �4.6 �3.1 �2.4
d̂2 [ppmv] �4.6 �3.1 �2.4
d̂3 [ppmv] �0.1 �3.1 �2.4

Table 4. Incorrect Basis Functions: Incorrect Prior Fluxes (s0 = B

= [�3.5, +2.0, 1.0, �0.5])

Full inversion
Uncorrected

simple inversion
Corrected

simple inversion

s1 [Gt C] �5.5 �11.1 �4.1
s2 [Gt C] 0.0 6.4 2.3
s3 [Gt C] 1.0 3.2 1.2
s4 [Gt C] �0.5 �1.6 �0.6
Stot [Gt C] �5.0 �3.2 �1.2
d̂1 [ppmv] �4.6 �3.9 �1.4
d̂2 [ppmv] �4.6 �3.9 �1.4
d̂3 [ppmv] �0.1 0.9 0.3
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in these simple inversions to change the assumed pattern (in
contrast to the full inversion, in which the individual fluxes
can be changed based on the available information from the
observations), the inversion algorithm is not able get a good
match with the observations. Accounting for the represen-
tation error seems to make things worse, since it drives the
solution more to the wrong prior estimate for the basis
function amplitude. However, the posterior error estimate
(not shown) is increased such that the solution falls within
the error estimate, in contrast to the uncorrected case. This
last example clearly illustrates the difference between a
hard and a weak constraint. The weak constraint has
flexibility defined by the prior error covariance that allows
for using the information from the observations wherever
possible. The prior flux estimate can therefore be adjusted
to provide the answer that is closest to the real answer
considering the prior covariances and observation covarian-
ces. The hard constraint, however, is not flexible at all and
will drive the solution to an incorrect answer when the prior
flux estimate (on which the basis function is based) has
errors in it, as is usually the case. The assumed pattern can
only be moved up or down defined by the retrieved
amplitude and has no flexibility to adjust the individual
fluxes to get a better match with the observations. The
inclusion of the representation error in the inversion will
only assure that we do not over interpret our results, it does
not provide a better solution.

4.3. Global Inversions

[31] Although the simple two-box model is useful for
understanding the basic problems with the use of basis
functions, it is important to make the link to the full GCM
inversions. In the recent TransCom3 model comparisons
[Gurney et al., 2002], CO2 flux inversions of several models
were compared. Annual mean CO2 concentrations from 77
flask stations were inverted with the models to retrieve the
amplitudes of the flux patterns of 22 basis regions (see

Figure 1), the amplitudes of fossil fuel, neutral biosphere,
and oceanic carbon exchange fluxes, and an offset value.
Each amplitude value has a prior guess with a matching
prior error estimate. The prior errors of the fossil fuel,
neutral biosphere, and oceanic carbon exchange flux ampli-
tudes were set to very small values. This way, these flux
amplitudes cannot be changed in the inversion and therefore
are called presubtracted flux fields. The prior errors of the
basis region amplitudes are all set to large values, which
leaves the inversion free to change the prior estimates. All
models used the same set of basis regions with basis
functions specified from prior knowledge about natural flux
patterns. The analogy with the two-box model is that the
prior information about the flux patterns within each basis
region is specified as a hard constraint through the use of
the basis functions. This allows no flexibility in the
retrieved flux patterns and therefore will produce incorrect
results in case the specified flux patterns are not correct.
Another set of hard constraints are the presubtracted flux
fields. Since the prior errors are almost zero, any error in our
estimate of these fluxes and their spatial and temporal
structure cannot be adjusted and will therefore produce
errors in the retrieval of the fluxes for the 22 basis regions.
[32] To illustrate the problem of incorrect specification of

spatial structure within the basis regions, we performed the
annual mean TransCom3 inversion using response functions
of the Colorado State University (CSU) GCM [e.g., Randall
et al., 1996; Fowler and Randall, 1999; Eitzen and Randall,
1999] produced from surface fluxes using the original
TransCom3 ‘‘footprints.’’ All three experiments used the
same set of regional fluxes at the 22-region resolution of the
inversion, but subregional distributions were varied to
produce basis function error. Our control experiment dis-
tributed the fluxes according to the annual net primary
production simulated by the CASA ecosystem model [Ran-
derson et al., 1997], exactly as in the original TransCom3
experiment. Pseudodata from this experiment can be

Table 5. Estimated Flux Differences Caused by the Internal Representation Error Effect

Source region
Posterior

[Gt C yr�1]

CandN experiment Flat experiment SiB2 experiment

Gt C yr�1 % Gt C yr�1 % Gt C yr�1 %

Boreal North America 0.57 0.04 14.6 0.26 84.5 �0.28 �91.0
Temperate North America 0.57 �0.03 �2.0 �0.19 �12.0 0.43 27.8
Tropical America 1.09 0.10 23.3 0.10 22.9 0.47 112.7
South America 0.98 �0.02 �13.2 �0.03 �18.9 0.35 201.3
North Africa 1.08 0.14 49.9 0.12 43.0 �0.41 �143.2
South Africa 0.80 0.00 20.8 0.03 158.8 0.10 446.8
Boreal Asia 0.52 �0.32 �33.6 0.01 1.0 0.63 67.1
Temperate Asia 0.79 �0.06 �4.6 �0.37 �29.5 �0.20 �15.6
Tropical Asia 0.73 �0.05 �6.6 0.04 5.3 �0.31 �42.1
Australasia 0.33 �0.08 �135.2 �0.09 �148.4 0.04 58.4
Europe 0.50 0.31 47.0 0.15 22.7 0.13 19.4
North Pacific 0.28 0.07 28.9 0.04 18.4 �0.11 �43.5
West Pacific 0.30 �0.10 �56.5 �0.02 �11.6 0.17 99.2
East Pacific 0.45 0.01 4.3 0.02 7.2 0.04 17.0
South Pacific 0.48 0.03 26.1 0.06 43.6 �0.32 �251.5
Northern Ocean 0.15 �0.10 �142.6 �0.08 �109.9 �0.43 �621.9
North Atlantic 0.35 0.04 16.9 0.06 24.9 �0.11 �41.8
Tropical Atlantic 0.30 0.02 5.4 �0.07 �22.5 0.01 5.0
South Atlantic 0.44 �0.01 �16.4 �0.00 �12.8 0.01 38.3
Southern Ocean 0.29 �0.01 �10.3 �0.02 �15.0 �0.12 �92.1
Tropical Indian Ocean 0.50 �0.02 �3.5 �0.02 �4.1 �0.17 �31.1
South Indian Ocean 0.37 0.01 24.4 �0.01 �14.1 0.06 113.9
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inverted to retrieve fluxes for each region. This control
inversion eliminates any transport error and representation
error. Therefore, the inverted fluxes will be defined by the
simulated observations and the prior fluxes using the
specified observational errors and the prior flux errors as
weights. Two other experiments (CandN and Flat) used
different subregional distributions of the surface fluxes to
simulate observations and are defined in Appendix A. Our
setup is similar to inverting one set of observations using
three sets of basis functions, but saves the calculation of
three different sets of response functions. Differences
between the CandN and Flat inversions and the control
inversion are shown in Table 5 both in Gt C yr�1 and % as
CandN experiment and Flat experiment.
[33] As can be expected, the largest differences are found

over land, where the flux footprints have the largest differ-
ences among the three experiments. For instance, the
inverted fluxes for Boreal North America, Europe, Temper-
ate Asia, and Northern Africa change substantially when
using different basis functions for the inversion. An exam-
ple of the often unpredictable nature of these errors is
Boreal Asia. While the spatial pattern difference between
the CASA footprint of the control inversion and the flat
footprint of the Flat inversion is much larger than the
difference between the CASA footprint of the control
inversion and the footprint of the CandN inversion, the
difference between the CASA fluxes and the flat fluxes are
small and the difference between the CASA fluxes and the
CandN fluxes are large. Temperate North America shows
comparable retrieved fluxes using the CASA footprint and
the CandN footprint, but a quite different retrieved flux
using the Flat footprint. Figure A1 shows that the Flat
footprint is not a good approximation of the CASA or
CandN footprints, while the latter two are reasonably
similar. However, relatively larger differences in the
retrieved fluxes are observed downwind of the North Amer-
ican landmass over the Northern Ocean. Apparently, differ-
ences between the CASA and the CandN footprint have a
larger effect here. When we try to account for the represen-
tation error using equation (12), differences from the true
flux do not become smaller. The solutions are driven closer
to the prior estimates, because the values of C(d) are
increased (not shown). However, this does not generate
better solutions to the inverse problem. Although differences
between the three inversions are noticeable, they generally
fall within the posterior error estimates (second column in
Table 5). They could however become more significant
when more observations are used in the inversion calcula-
tions and/or when the transport model errors are reduced.
The errors shown in Table 5 will only be reduced when the
hard constraint setup is replaced by a weak constraint setup.
[34] The use of presubtracted flux patterns can even lead to

larger errors in the inverted fluxes as will be shown below.
Although we have a reasonable knowledge about these
prescribed fluxes, our knowledge is not exact. For instance,
the total fossil fuel emission per country is known accurately,
but the distribution in space and time per country is less well
known. Currently, the fossil fuel emission rates within a
country are distributed according to population numbers.
However, power plants and cement plants are not always
located in high population areas. Also, seasonal, daily, and
diurnal emissions are not documented in detail. Here, we

consider the effect of uncertainties in the neutral biosphere
fluxes on the inversions. The description of the neutral
biosphere fluxes used in TransCom3 is based on the CASA
model [Randerson et al., 1997]. Although this is a reasonable
estimate of these fluxes, it is by no means the only estimate
possible. We used an estimate based on the SiB2 model
[Denning et al., 1996] as an alternative to the CASA estimate.
Although both estimates have a zero annual mean flux, they
differ significantly both in time and space.
[35] Figure 2 shows annual mean concentration fields

using the CASA fluxes and the SiB2 fluxes, respectively.
Large differences are visible, which are mainly caused by
the rectifier effect acting on flux distributions that are
different in amplitude and phase. This means that although
the annual mean flux of both flux distributions is zero, large
differences in the annual mean CO2 concentrations are
produced by the interaction of the transport with flux
distributions that differ in time and space. The SiB2 experi-
ment columns in Table 5 show the results of the inversion
with the SiB2 fluxes used for the prescribed neutral bio-
sphere fluxes relative to the control inversion using the
CASA fluxes. Large differences in the inverted fluxes are
found. Apparently, two equally valid estimates of the
neutral biosphere fluxes can produce two very different
answers to the inversion problem. Again, this is caused by
imposing a hard constraint that does not allow any changes
in the assumed prior flux estimate. Also noteworthy is that
the errors of the SiB2 experiment are larger than the two
other experiments. Because the specification of the neutral
biosphere fluxes have a much larger impact on the simu-
lated observations than the relatively small fluxes of the 22
individual basis regions, any errors in the prior assumptions
will have a larger impact on the inversion results.

5. Conclusions

[36] In atmospheric CO2 inversions it is important to
account for all relevant sources of error. In the general
inversion equation (equation (3)) these errors are split into
two categories, the prior errors defining our confidence in
the prior estimate of the surface fluxes, and the errors
representing the expected difference between the model
simulations and the observations. The latter category of
errors should contain several different sources of error,
although quite often only the observation error is taken into
account. This leads in the best case to misleading discus-
sions about the value of the observations and in the worst
case to incorrect inversion results.
[37] Not accounting for certain error sources can be

defined as applying hard constraints to the inversion prob-
lem. A hard constraint uses prior information relevant to the
inversion problem and applies it without any flexibility in
case the prior assumptions are wrong. In most cases this will
lead to incorrect inversion results. On the other hand, a weak
constraint also applies prior information to the inversion
problem, but allows flexibility to these assumptions within
the margins of the defined prior error covariance. If estimated
correctly, these prior assumptions and especially these prior
covariance matrices will constrain the problem correctly. It is
important to note here that using prior information with very
small prior error estimates in cases where this is not justified
basically acts as a hard constraint as well.
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Figure 2. Annual mean response of concentration in the planetary boundary layer to purely seasonal
forcing by balanced terrestrial biota as simulated by the CSU GCM. (a) Response to fluxes from CASA
model used in TransCom3. (b) Response to SiB2 model fluxes.
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[38] We discussed in more detail two sources of error that
are often applied as hard constraints, the model transport
error and the internal representation error. When the model
transport error is not taken into account, we assume a
perfect relation between CO2 concentration observations
and surface fluxes. This will give too much weight to
the observations in the inversion. Proper accounting for
the model transport error will give proper weights to the
observations depending on how well our transport model is
able to model regional and large-scale transport. So, even
perfect observations will have to be weighted properly
depending on how well our transport model is able to
model the relationship between these observations and the
surface fluxes.
[39] The internal representation error is harder to deal

with, because it cannot be completely accounted for. Spec-
ifying fixed footprints in large regions or seasonal or diurnal
patterns of fluxes will limit the possible solutions to the
inversion problem to exactly those assumed patterns. Only
the amplitudes of these footprints can be changed during the
inversion. If the assumed flux pattern is incorrect, the
solution within each basis region will be incorrect, which
can lead to incorrect aggregated fluxes for each basis region.
Methods to account for this representation error will avoid
overinterpretation of the results, but will not necessarily
provide a better solution. Also the specification of a prior
constraint with very small prior errors, as was done in the
TransCom3 experiment with the neutral biosphere and the
fossil fuel fluxes, will often lead to incorrect results if these
small prior errors are not justified.
[40] Most optimal would be to invert on the native

transport model grid and time step with the prior knowledge
of the fluxes fully specified as a weak constraint taking the
spatial and temporal correlations fully into account. This
allows for an optimal use of the information contained in the
observations. If the observations contain little information
about the fluxes in a certain area, the retrieved fluxes will
basically reflect the prior estimate. If the observations do
contain information about the fluxes in a certain region, the
fluxes in that region will be adjusted to match the simulated
concentrations with the observations. Proper inversion sta-
tistics (e.g., averaging kernels [Rodgers, 2000]) will show
where we retrieve the prior estimates back and where we
will retrieve new information about the fluxes. This also
allows for a more continuous improvement of our flux
estimates when more and better observations become avail-
able. However, with the current transport models this is hard
to accomplish, especially since most of these models use
simple perturbation methods to estimate the response func-
tions instead of using an adjoint model as used by Kaminski
et al. [1999]. The calculation of the response functions for
every grid box and time step would therefore be a very
cumbersome task. It is important, however, to be aware of
the possible representation errors and to make an effort to
minimize these errors. Downscaling the inversion problem
by using large regions and assumed temporal patterns is too
rigid and leads to unavoidable bias in the retrieved fluxes.
Especially, with increased flask measurement programs and
the next generation satellites providing many more obser-
vations [Engelen et al., 2001] modelers should make an
effort to make full use of these observations and avoid any
hard constraints on the problem.

[41] Finally, we would like to point out the use of full data
assimilation systems as are being used in numerical weather
prediction. These would allow a better use of the current
and future observations by using observations when and
where they are available to constrain the forward model run.
This way we could even constrain biological surface flux
processes (if modeled in the data assimilation model) with
such observation as satellite surface vegetation maps or
ocean surface chlorophyll concentrations. For this to work,
however, it is important to have enough (near) real-time
observational data that can adequately constrain the forward

Figure A1. Subregional spatial structure of surface fluxes
(g C m�2 yr�1) from Temperate North America as simulated
in three forward simulations with the CSU GCM. Annual
global integral of each field is exactly 1 Gt C yr�1, scaled by
inversion to optimize agreement with observed CO2.
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model CO2 simulations. Although this kind of full data
assimilation to invert surface CO2 fluxes may still be years
down the road, we think it is important to head in that
direction and start thinking how to make best use of the
available observations.

Appendix A

[42] The experiments described in section 4.3 are chosen
to illustrate the effect of prescribed basis functions on the
inversion of surface fluxes. The CandN experiment uses
subregional distributions reflecting the effects of net sinks
due to CO2 and nitrogen fertilization simulated by the
SLAVE model [Denning et al., 1999a]. The Flat experiment
uses spatially homogeneous (flat) distributions of surface
fluxes within each region. The spatial distributions of sur-
face fluxes in the control and the CandN experiments are
qualitatively similar, representing two quite plausible dis-
tributions based on prior knowledge. The differences in the
inversions produced by these different footprints are prob-
ably quite reasonable estimates of the magnitude of errors in
actual inversions arising from incorrect spatial distribution
of surface fluxes in basis regions of this size. The distribu-
tion used in the Flat experiment is not reasonable based on
prior knowledge: for example the Sahara and the Congo
Basin are assumed to be equally responsible for any source
or sink in northern Africa. The inversion errors produced by
these pseudodata represent an extreme case and bracket the
magnitude of errors in retrieved fluxes arising from internal
representation error. Some people might argue it is more
appropriate to use flat basis functions because they feel we
are cheating by using prior knowledge to specify spatial
patterns within basis regions. We should point out that
unadjustable spatial structure is a hard constraint, whether
it is flat or reasonable. And since flat is very unlikely at
these spatial scales, such an approach is likely to produce
worse bias, not less, than we get using prior knowledge to
specify these spatial structures. It should also be pointed out
here that in our setup with a number of presubtracted flux
patterns (e.g., neutral biosphere and fossil fuel) on which
the inverted basis region fluxes are adjustments, the effect
of the chosen basis functions is smaller than when we would
invert without presubtracted flux patterns. Figure A1 shows
the three different footprints for temperate North America.
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