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Abstract. Croplands are man-made ecosystems that have
high net primary productivity during the growing season of
crops, thus impacting carbon and other exchanges with the
atmosphere. These exchanges play a major role in nutri-
ent cycling and climate change related issues. An accurate
representation of crop phenology and physiology is impor-
tant in land-atmosphere carbon models being used to predict
these exchanges. To better estimate time-varying exchanges
of carbon, water, and energy of croplands using the Sim-
ple Biosphere (SiB) model, we developed crop-specific phe-
nology models and coupled them to SiB. The coupled SiB-
phenology model (SiBcrop) replaces remotely-sensed NDVI
information, on which SiB originally relied for deriving Leaf
Area Index (LAI) and the fraction of Photosynthetically Ac-
tive Radiation (fPAR) for estimating carbon dynamics. The
use of the new phenology scheme within SiB substantially
improved the prediction of LAI and carbon fluxes for maize,
soybean, and wheat crops, as compared with the observed
data at several AmeriFlux eddy covariance flux tower sites
in the US mid continent region. SiBcrop better predicted
the onset and end of the growing season, harvest, interan-
nual variability associated with crop rotation, day time car-
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bon uptake (especially for maize) and day to day variability
in carbon exchange. Biomass predicted by SiBcrop had good
agreement with the observed biomass at field sites. In the fu-
ture, we will predict fine resolution regional scale carbon and
other exchanges by coupling SiBcrop with RAMS (the Re-
gional Atmospheric Modeling System).

1 Introduction

Trends in global warming and climate change have drawn
more attention towards anthropogenic emissions of green-
house gases. Carbon dioxide (CO2) has been identified as
the main anthropogenic greenhouse gas contributing to cli-
mate change (IPCC, 2007). Land-atmosphere exchanges of
energy, water vapor and CO2 play a major role in climate
change and its long-term consequences. A powerful way
to evaluate these exchanges is to model the fluxes between
the land and atmosphere using reliable land surface models,
while evaluating the outcome against observed data. The per-
formance of those models depends on how well they can sim-
ulate the vegetation properties and dynamics over time and
space. This study focuses on estimating the CO2 exchanges
in cropland ecosystems, evaluated against AmeriFlux eddy
covariance flux tower sites with maize, soybean, and wheat
crops (Fig. 1). During the growing season, the presence of
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Fig. 1. Distribution of maize, soybean, and wheat in the US mid west region encompassing the eddy covariance flux tower sites used for
model testing (i.e. Bondville, IL, Mead, NE, and ARM-SGP, OK; marked with asterisk). Crop areas are presented as a percentage of the
county area (Source: NASSus database; Lokupitiya et al., 2007).

crops significantly impacts CO2 fluxes, as well as albedo,
roughness length, Bowen ratio, and soil moisture. There-
fore, an accurate representation of crop phenology (i.e., tim-
ing of different growth stages) and physiology is important
in predicting carbon and other exchanges of these managed
ecosystems (Betts, 2005; Hansen et al., 2006; Desjardins et
al., 2007).

Croplands include a variety of species with different phe-
nology and physiology. Crops have either C3 or C4 pho-
tosynthetic pathways and the associated differences in plant
anatomy and physiology. Croplands have unique dynamics
as managed ecosystems that are mostly governed by the dates
of planting and harvest, crop rotation, tillage, fertilization, ir-
rigation, and pest control. Most croplands are characterized
by high rates of CO2 uptake and net primary productivity
(NPP) over their short growing seasons. Although certain
croplands may physically resemble grasslands (i.e. compared
to forests), they differ substantially in terms of seasonality,
phenology and physiology, and harvested products, which
can account for 40-60% of the above ground biomass (Hay,
1995; Prince et al., 2001; Rao et al., 2002; Heard, 2004) that
is exported after the crop reaches maturity. Therefore mod-

els that simulate agricultural ecosystems should have a good
representation of the crop phenology and physiology that are
associated with the unique properties of these ecosystems.

Most of the existing models for simulating phenology,
physiology, growth, carbon, nutrient and water fluxes of spe-
cific crops, are complex, process-based models and have
used different strategies in simulating cropland dynamics.
For instance, Gervois et al. (2004) and de Noblet-Ducoudré
et al. (2005) combined an existing agronomy model (STICS),
which has a daily time step and the ability to simulate sev-
eral crops (maize, wheat, and soybean) to the soil-vegetation
atmosphere scheme of an existing dynamic global vegeta-
tion model (ORCHIDEE) with a 30-min time step, to im-
prove the carbon and water exchanges from croplands pre-
dicted by the latter model. The coupled model performs at
a 30-min timestep (Gervois et al., 2004). Similarly, the suite
of CROPGRO and CERES models (e.g., Jones and Kiniry,
1986, Kiniry, 1991, Ritchie, 1991, Boote et al., 1998) were
developed to simulate crop-specific detailed physiology and
phenology of several cereals, legume and other crops. These
models have daily time step, detailed physiology, represented
by algorithms for estimating photosynthesis, dry matter par-
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titioning, water, and energy fluxes from crop vegetation, and
uses Weather, soil, management data as the inputs. Bondeau
et al. (2007) have simulated global and grid scale carbon
fluxes and yields for different annual crop functional types
(CFTs; altogether 13–11 arable crops and 2 managed grass
types) using a global scale dynamic vegetation model for
managed land, Lund-Postsdam-Jena managed land (LPJmL),
with monthly weather data and a weather generator to obtain
the daily distribution of the weather. In addition to predict-
ing the fluxes for CFTs, the model also predicts carbon fluxes
for the natural plant functional types (PFTs; Bondeau et al.,
2007). Recent work at the National Center for Atmospheric
Research (NCAR) includes the addition of crop-related in-
formation (i.e. planting, allocation, phenology, etc.) from
Agro-IBIS model (i.e. a process-based, terrestrial ecosys-
tem model; Kucharik and Byre, 2003) to improve the crop-
land representation by the land surface parameterization in
the Community Land Model (CLM (Oleson et al., 2008);
S. Levis, personal communication, 2008). The new cou-
pled model, which includes crop life cycles and carbon and
nitrogen algorithms from Agro-IBIS, is referred to as CN-
crop. CN-crop has the ability to simulate maize, wheat, and
soybean (in contrast to the original CLM, which considers a
generic crop that is modeled like a grass) at half hourly inter-
vals. The above models have complex physiology and built
in phenology mostly governed by temperature (i.e. thermal
time or growing degree days).

Since croplands seem to play a role in large-scale climate
feedbacks, coupling crop models with climate models has
also been done to improve the accuracy of predicting carbon
and other exchanges between the atmosphere and biosphere
(Betts, 2005). Several of the existing crop models have been
already coupled with such climate/land surface models for
regional or global scale predictions. For instance, Osborne
et al. (2007) coupled the General Large Area Model for an-
nual crops (GLAM; Challinor et al., 2004, 2005), which has a
daily time step, within the land surface scheme (i.e. MOSES)
of the global climate model (GCM), HadAM3, for simulat-
ing groundnut (peanut). MOSES2 provides the lower atmo-
spheric conditions based on the influence from the vegeta-
tion, and GLAM simulates crop growth based on the envi-
ronmental conditions. The coupled model has a half-hourly
time step. (Osborne et al., 2007). Similarly, CN-crop (de-
scribed above) has been fully coupled within the Community
Climate System Model (CCSM) of NCAR (S. Levis, per-
sonal communication, 2008). CERES/DSSAT crop models,
which have a daily time step, have also been coupled with
climate models in different studies (e.g. Schulze et al., 1993;
Takle et al., 2003; Baigorria et al., 2007) for improved pre-
diction of the climate interaction with the cropping systems.

The Simple Biosphere model (SiB) has been used in es-
timating land atmosphere exchanges at both global and re-
gional scales (Sellers et al., 1996a, 1996b, Baker et al., 2008).
SiB simulates the biological processes of photosynthesis and
respiration and the physical processes of turbulent transport

between the land surface and the boundary layer. Biophysi-
cal models such as SiB were originally developed to estimate
surface fluxes of latent heat, sensible heat, and momentum in
General Circulation Models (Sellers et al., 1986, 1992, 1994,
1997; Los, 1998). The ecosystem fluxes are estimated from
leaf-level calculations using scaling assumptions (Sellers et
al., 1992) based on nutrient distribution in the canopy.

Originally, planting and harvest events and the presence
of alternating crops, etc., were not well represented in SiB.
The basis for carbon, moisture, and energy fluxes predicted
by SiB was the leaf area index (LAI) and fraction of photo-
synthetically active radiation (fPAR) derived from remotely
sensed NDVI. The NDVI products minimize cloud contam-
ination by using 15-day or monthly maximum value com-
posites. Interpolation between these composite values leads
to mismatches between the actual period of crop presence in
the field and that predicted by the NDVI, and the time com-
positing unrealistically extends the growing season. Any ef-
fects from partly-cloudy pixels, aerosols, and smoke, etc.,
on NDVI, are also reflected in the predicted LAI and fPAR.
Compositing also occurs in space as well as time, leading to
misrepresentation between the pixel used for the NDVI and
the actual conditions in the field. The NDVI and the respi-
ration formulation does not account for crop harvest, forcing
an annually balanced carbon budget, when in reality much of
the biomass is removed from the site. The result is unrealis-
tic simulated biomass and carbon fluxes, indicating the need
for a new crop phenology scheme to reflect highly managed
crop ecosystems.

To improve the functionality of SiB over cropland ecosys-
tems, we developed and evaluated offline crop-specific phe-
nology (and physiology) models for major C3 and C4 crops.
We coupled these models with SiB, to replace the use of
NDVI in predicting LAI and improve the accuracy of the
predicted fluxes by SiB. The new model is referred to as
SiBcrop. The climate driven dynamic phenology scheme
within SiBcrop simulates the daily biomass in different plant
pools, LAI, and specific events during crop growth cycle
such as planting, emergence, vegetative and reproductive
growth stages (Fehr et al., 1971; Ritchie et al., 1992, 1996),
harvesting, etc. We evaluated the performance of SiBcrop
for maize and soybean, by using observed data at two agri-
cultural eddy covariance flux tower sites in the US Midwest,
which have a good record of these crops grown in rotation:
Bondville, Illinois (Meyers and Hollinger, 2004), and Mead,
Nebraska (Suyker et al., 2004; Verma et al., 2005). We also
evaluated the performance of SiBcrop for wheat, using ob-
served data from the Southern Great Plains eddy covariance
flux tower site (Fischer et al., 2007) under the Atmospheric
Radiation Measurement (ARM) program, in Oklahoma; cur-
rently this site, known as ARM-SGP, is the only active wheat
site under the AmeriFlux program.
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2 Materials and methods

2.1 Simple biosphere model

The parameterization of photosynthetic carbon assimilation
in SiB is based on enzyme kinetics originally developed by
Farquhar et al. (1980), and is linked to stomatal conductance
and thence to the surface energy budget and atmospheric cli-
mate (Collatz et al., 1991, 1992; Sellers et al., 1996a; Randall
et al., 1996). The model has been updated to include prog-
nostic calculation of temperature, moisture, and trace gases
in the canopy air space, and the model has been evaluated
against eddy covariance measurements at a number of sites
(Baker et al., 2003; Hanan et al., 2004; Vidale and Stöckli,
2005; Philpott et al., 2007). SiB has been coupled to the
Regional Atmospheric Modeling System (RAMS) and used
to study PBL-scale interactions among carbon fluxes, tur-
bulence, and CO2 mixing ratio (Denning et al., 2003) and
regional-scale controls on CO2 variations (Nicholls et al.,
2004; Corbin et al., 2008; Wang et al., 2007). Other re-
cent improvements include biogeochemical fractionation and
recycling of stable carbon isotopes (Suits et al., 2005), im-
proved treatment of soil hydrology and thermodynamics, and
the introduction of a multilayer snow model based on the
Community Land Model (Dai et al., 2003).

The current version (version 3.0) of SiB (i.e. SiB3) re-
quires the vegetation state, vegetation type, soil character-
istics, and weather data as input data. The vegetation state
refers to time-dependent properties such as Leaf Area Index
(LAI), aerodynamic roughness length, and absorbed fraction
of incident visible light (fPAR). The vegetation type deter-
mines the physical characteristics of the canopy that do not
vary with time, such as the canopy height, leaf transmittance,
and photosynthetic capacity (Sellers et al., 1996b). Soil
type determines soil hydraulic and thermal properties (Clapp
and Hornberger, 1978). Weather data consists of tempera-
ture, wind speed, precipitation (convective and stratiform),
atmospheric pressure, humidity, and down-welling radiation
(shortwave and longwave, direct and diffuse).

Historically, SiB has used prescribed vegetation parame-
ters derived by remote sensing (Sellers et al., 1996b). At
global scale, this approach allows realistic simulation of spa-
tial and temporal variations in vegetation cover and state
(Denning et al., 1996a, 1996b; Schaefer et al., 2002, 2005;
Baker et al., 2008). At the underlying pixel scale, however,
phenology products derived from satellite data must be heav-
ily smoothed to remove dropouts and artifacts introduced by
frequent cloud cover. An inevitable trade-off between cloud-
induced “noise” in the leaf area and time compositing sys-
tematically stretches the seasonal cycle by choosing data late
in each compositing period in spring, and early in each com-
posite in fall. Therefore, in this study, we have addressed this
problem, by developing and testing a prognostic phenology
sub model for SiB, rather than using satellite data for speci-

fying crop phenology, while incorporating better parameter-
ization for cropland ecosystems.

We modified the parameters within SiB to better represent
soybean (Glycine maxL.; C3), maize (Zea maysL.; C4),
and wheat (Triticum aestivumL.; C3), the dominant crops in
the US mid western region. Crop specific information and
data from past literature were used in modifying the exist-
ing parameter values (Table 1). We also modified the algo-
rithm for respiration control, to allow for harvest removal.
In SiB, an annual respiring carbon pool is calculated assum-
ing that carbon in the total net photosynthetic assimilation
(i.e. gross photosynthesis – canopy maintenance respiration)
is added to, and partitioned among the litter and soil layers,
and respired within a year, causing an overall annual zero net
ecosystem exchange. We modified the annual net photosyn-
thetic assimilation carbon added on the ground (i.e. within
different litter and soil layers), to include only the fraction
of carbon left after the removal of the harvest (Table 1). We
also set the physiological fractions (C3 vs C4) of the crops
in such a way that it could represent any crop rotation, where
each subsequent term’s crop is planted on the residue of the
previous crop.

2.2 Phenology in SiBcrop

Phenology events and growth stages were determined by the
growing degree days and the number of days since plant-
ing. Phenology was calculated once a day within SiBcrop
(Fig. 2). The model allocates sub hourly photosynthetic car-
bon to four different plant pools (leaves, stems, roots and
products (flowers, grain, and pods) depending on seasonal
development. The daily carbon allocation to leaves was used
to update LAI, which was then used to calculate photosynthe-
sis during the following day. We assumed that the crop plants
were not limited by nitrogen and other nutrients, as they were
well fertilized (SiB has indirect representation of nitrogen
limitation through Rubisco dynamics within the photosyn-
thetic mechanism). The parameters and functions used in
the phenology submodel were specific for different crops,
growth stages and plant pools.

2.2.1 Detailed scheme

Planting dates for crops were set at the seventh consecutive
day on which the air temperature remained above a crop-
specific optimal temperature for germination; planting date
was readjusted if the temperature dropped below a certain
threshold after the initial 7-day period (Pedersen, 2003; Ped-
ersen and Lauer, 2004; USDA, 1997). Plant emergence, sub-
sequent growth stages and phenology events were set based
on accumulated growing degree days (Eq. (1)) and the num-
ber of days since planting (Taylor et al., 1982; Wells et al.,
1986; Ritchie et al., 1996; Heard, 2004).

GDD =

∑
(Tmean− Tbase) (1)
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Table 1. Some important crop relevant parameters in SiBcrop; these parameter values are deviations or additions to the parameter values
given for SiB in Sellers et al. (1992, 1996b).

Parameter Value Unit Reference

Maximum Rubisco Carboxylation Velocity µmol m−2 s−1 Harley et al., 1985; Norman and
(Vmax) Arkebauer, 1991; Arora, 2003;
Maize 54 Morgan et al., 2004, Ainsworth et al.,
Soybean 100 2004; Bernacchi et al., 2005;
Wheat 93 Kothavala et al., 2005

Height to canopy top m Based on observations
Maize 2.5
Soybean 1.0
Wheat 0.5, 0.95

Half point high temperature K DeVries et al., 1989; Hofstra and
inhibition function (HHTI) Hesketh, 1969; Boote et al., 1998;
Maize 318 Law et al., 2001
Soybean 313
Wheat 308
Annual fraction net assimilation C 0.6–0.65 dimensionless Based on crop specific
added on soil/litter layers harvest indexes.
(to account for harvest removal)

Maintenance respiration (C) coefficients g CO2-C g−1 (d.w.C∗) d−1 Amthor, 1984; de Vries et al., 1989;
at 20◦C: (Respmaint coeff; Norman and Arkebauer, 1991;
derived based on the values given in the references) Goudriaan and Van Laar, 1994
Roots 0.016
Leaves
Maize and soybean 0.016
Wheat 0.009
Stems 0.005
Products 0.008

Growth respiration (C) coefficients: g CO2-C g−1 (d.w.C) d−1 de Vries et al., 1989
(Respgrowth coeff; derived from the values
given in the reference)
Maize
Roots 0.221
Leaves 0.251
Stems 0.223
Products 0.209
Soybean
Roots 0.293
Leaves 0.431
Stems 0.295
Products 0.675
Wheat
Roots 0.221
Leaves 0.251
Stems 0.223
Products 0.189

∗ d.w.C= dry weight (i.e. biomass) carbon
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Fig. 2. Methodological Framework.

whereGDD is the accumulated daily growing degree days;
Tmeanis the average daily temperature (◦C); Tbaseis the base
temperature (10◦C for maize and soybean, and 0◦C for win-
ter wheat), above which the growing degree days start to ac-
cumulate (there is no accumulation of GDDs below the base
temperature or above an optimal temperature, which is 30◦C
for maize and soybean, and 26◦C for winter wheat; Neild
and Newman, 1986; McMaster and Wilhelm, 1998; Cornell
University Cooperative Extension, 2008).

In the earliest stages of plant growth, photosynthesis is in-
sufficient to support the development of new biomass. Initial
plant growth was assumed to be derived from stored carbon
in the seed.

The initial biomass values at emergence (Green and Sudia,
1969; Blum et al., 1980; Smiciklas et al., 1992; Richardson
and Bacon, 1993; Pinhero and Fletcher, 1994; Hameed et
al., 2003) were set considering the average planting density
based on the plant and row spacing typical for each crop.
Starting from the day of emergence, a daily LAI value was
estimated based on leaf carbon (details follow), for deriv-
ing fPAR and estimating sub hourly photosynthetic assimi-
late, respiratory carbon (i.e. both ground and canopy respira-
tion) and other fluxes during the following day. During the
early phase of vegetative development, in which the carbon
stored in the seed is utilized for growth (Peterson et al., 1989;
McWilliams et al., 1999; Nielsen, 2007), the daily biomass
addition/gain rate was set to be optimal, assuming that the
seedling is not nutrient limited and that growth is dependent
on the temperature and moisture availability (Eq. (2)). The
growth rate followed a linear ramp during the initial seedling
development.

Md ≈ Minit + (t ∗
(Mmax − Minit)

τseed
) ∗ CM ∗ CT (2)

whereMd is the daily biomass carbon (C) addition/gain rate
in the seedling during the initial phase (i.e. the phase in which

the seed stored carbon is utilized), assuming optimal nutri-
ent availability (g C m−2 d−1); t is time in days (d) between
a given day in the initial phase and the day of emergence;
Mmax is the maximum potential biomass carbon addition rate
by the end of the initial phase;Minit is the initial biomass
carbon addition rate (g C m−2 d−1), estimated based on the
initial biomass on the day of emergence, assuming that car-
bon constitutes 45% of the biomass;τseedis the time in days
(d) between the emergence and the end of the early phase
during which the seed stored carbon is utilized;CM andCT

are moisture and temperature dependent coefficients (derived
using the information given in de Vries et al. (1989); dimen-
sionless).

During rest of the growth cycle after the above initial
seedling phase, daily photosynthetic assimilate (accumulated
sub hourly photosynthetic carbon) was used as the basis in
deriving the daily increments in biomass carbon.

The biomass carbon added on each day was allocated to
different plant pools at crop specific growth stages (Fig. 3),
set by the growing degree days and the number of days
since emergence (Fig. 4; Puckridge, 1972; Taylor et al.,
1982; Wells et al., 1986; Yamagata et al., 1987; Gregory
and Atwell, 1991; Ritchie et al., 1996; Gregory et al.,1997;
Gómez-Macpherson et al., 1998; McMaster and Wilhelm,
1998; Wilhelm, 1998; Heard, 2004). At the end of each day,
the carbon in each pool was calculated by subtracting the
growth and maintenance respiration (details follow) from the
daily biomass carbon allocation; the amount of leaf carbon
was used to calculate a daily LAI value (Eq. (3)). Senes-
cence was induced when the leaf respiration exceeded daily
leaf growth, causing biomass loss. Following the vegetative
phase of growth, further allocation to leaves was significantly
reduced during the subsequent reproductive phase of growth
(Figs. 3 and 4). The crop was harvested after it reached phys-
iological maturity, allowing some field drying (Fowler, 2002;
Neilson et al., 2005).
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R1 R2 R3 R4 R5 R6

V1 V3 V5 V8 V11 V14 V17 V20

R1 R3 R4 R5 R6 R7 R8

V1 V3 V10 V18 VT

Fig. 3. Growth stages for maize and soybean. Maize: V1–
V18=vegetative growth stages from single leaf to 18-leaf stage;
VT=tasseling; R1–R6=reproductive growth stages; R1=silking;
R2=blister; R3=milk; R4=dough; R5=dent; R6=physiological
maturity. Soybean: V1–V20=vegetative stages from sin-
gle leaf to 20-leaf stage; R1–R7- reproductive growth stages;
R1=beginning bloom; R2=full bloom; R3=beginning pod; R4=full
pod; R5=beginning seed; R6=full seed; R7=beginning maturity;
R8=full maturity.

LAI = C∗

leaf2
∗SLA (3)

where LAI is leaf area index (m2 m−2); Cleaf is the amount
of leaf carbon (g m−2); SLA is specific leaf area (m2 g−1).

Estimation of growth and maintenance respiration

On each day, growth respiration (estimated using the com-
bination of crop-specific growth respiration coefficients for
different plant pools) was calculated as a function of biomass
carbon allocated to each plant pool. Growth respiration in
each pool was the amount of CO2-C emitted in the formation
of new crop biomass (Eq. (4)):

Rg(i) = allocast
(i) coeffg(i) (4)

whereRg(i)=growth respiration (g CO2-C m−2 d−1); i=1–4
(1=roots; 2=leaves; 3=stems; 4= products (e.g. flowers and
grain); alloc(i)=daily biomass carbon allocation to each plant
pool (g C m−2 d−1); coeffg(i)=growth respiration coefficient
(g CO2-C g−1 biomass carbon in theith pool d−1; Table 1).

Maintenance respiration was calculated considering the
fraction of the total non-structural carbohydrate and protein
carbon (Thornton et al., 1969; Evans et al. 1984; Reekie
and Redmann, 1987; Kiniry, 1993; Beauchemin et al., 1997;
Allen et al., 1998; Blum, 1998; Brouquisse et al., 1998; Col-
lar and Askland, 2001) within different plant carbon pools
on each day, considering a temperature dependentQ10 func-
tion with a base temperature of 25◦C. In deriving the mainte-
nance respiration coefficients in terms of carbon, the carbon
percentage in dry weight was considered as 45% (Buchanan
and King, 1993; Bolinder et al., 1997; Vanotti et al., 1997;
Burgess et al., 2002; Torbert et al., 2004). Carbon emission
as CO2-C in maintenance respiration for each plant pool was
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Fig. 4. Carbon allocation scheme for maize.

predicted from the carbon in each plant pool and mainte-
nance respiration coefficients specific to each pool and crop
type (Table 1; Eq. (5)):

Rm(i) = W ∗

(i)coeff∗m(i)f
∗

TNC,p(i)Q
(T −20)/10
10 (5)

where Rm=maintenance respiration (g CO2–C m−2 d−1);
i =1–4 (1=roots; 2=leaves; 3=stems; 4=grain);
W=cumulative carbon in theith pool (g C m−2 d−1);
tcoeffm(i)=maintenance respiration coefficient (g CO2-
C emitted g−1 carbon in the ith pool d−1; Table 1);
fTNC,p(i)=fraction of carbon in non structural carbohydrates
(TNC) and proteins of theith pool (this was estimated
considering that TNC have 45% carbon and proteins have
53% carbon (Hopkins et al., 1929; de Vries et al., 1989));
Q10=Q10 coefficient (i.e. 2.0 (Norman and Arkebauer, 1991;
Gourdriaan and Van Laar, 1994));T =temperature (◦C).

2.2.2 Evaluation of the model performance

The performance of SiBcrop was evaluated by comparing the
observed and predicted CO2 fluxes and LAI at three Ameri-
Flux eddy covariance flux tower sites with crops: Bondville,
Illinois (IL), and Mead, Nebraska (NE), and ARM-SGP site,
Oklahoma (OK).

The Bondville site (latitude 40.0061000; longitude
−88.2918667; elevation 300 m) is located in central Illinois
and has operated since August 1996 (Meyers and Hollinger,
2004). It has rainfed, no-till maize and soybean crops grown
in rotation (maize in odd numbered years and soybean in
even numbered years). The Mead site (latitude 41.1796670;
longitude−96.4396460; elevation 363 m) is located in Saun-
ders county in eastern Nebraska (Suyker et al., 2004). Mead
has both irrigated and rainfed sites, and only the rainfed site
was chosen for this study. This site has operated since 2001
also with rainfed no-till maize and soybean grown in rotation.
At these sites, maize plants grow to a height of 2.5 (Mead,
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8 E. Lokupitiya et al.: Predicting cropland carbon fluxes with SiBcrop

NE) to 3.0 m (Bondville, IL), and soybean plants grow to a
height of about 0.9 m.

The ARM-SGP site (latitude 36.60499954; longitude
−97.48840332; elevation 300–320 m), which has been active
since 1999, is located in Grant county, Oklahoma. This site
has winter wheat as the main crop, in addition to some pas-
ture and summer crops such as maize, soybean, and sorghum
(Fischer et al., 2007). For the current study, the years which
exclusively had the winter wheat crop with recorded ob-
served CO2 flux measurements (i.e. end of 2002–2004) were
chosen to evaluate the performance of SiBcrop for wheat.
Wheat plants at this rain fed site grow to a height of about
0.5 m.

SiBcrop could be run at any spatial resolution, with the
availability of suitable weather data. For this study we used
a time step of 30 min. Each eddy covariance site was simu-
lated as a single homogeneous spatial unit for periods with
observed data, using meteorological forcing from 6-hourly
NCEP-DOE Reanalysis 2 (Kalnay et al., 1996) weather data,
and crop information as given in the AmeriFlux website. Soil
texture was derived from the NRCS State Soil Geographic
(STATSGO) database. For the control runs with original
SiB, AVHRR NDVI data interpolated from monthly Global
Inventory of Modeling and Mapping Studies, version “g”
(GIMMSg; Tucker et al., 2005) data were used in estimat-
ing LAI and fPAR.

Sub hourly, diurnal, and annual net ecosystem exchange
(NEE; i.e. respiration-photosynthesis), LAI, and biomass
values predicted by SiBcrop for each site were compared
against observed data. The annual NEE cycles were formu-
lated based on the monthly means derived from sub hourly
fluxes. Seasonality and the year-to-year variation in the car-
bon fluxes, LAI, and biomass were compared and studied
considering the presence of single crop (winter wheat) and
crop rotation (i.e. alternating maize and soybean crops as at
Bondville and Mead sites) in the field. Statistical evalua-
tion and comparisons of the predicted fluxes and LAI from
control runs and SiBcrop against the observed data were
made using simple linear regression analyses and appropri-
ate statistical criteria (i.e. R-sq and root mean square error
(RMSE)). Predicted biomass by SiBcrop were also compared
against the observed biomass at the sites, using the same cri-
teria.

3 Results and discussion

3.1 SiBcrop simulations for summer crops (maize and
soybean)

SiBcrop was able to predict the planting and harvest events
and the changing phases within crop development and
growth cycle, in terms of LAI, biomass carbon, and carbon
fluxes for these sites, with more accuracy than the original
SiB.

The maximum LAI predicted for maize in different years
ranged between 5.0 m2 m−2 and 6.3 m2 m−2 at Bondville,
and between 5.0 m2 m−2 and 6.0 m2 m−2 at Mead. The max-
imum LAI predicted for soybean ranged between 4.6 and
5.7 m2 m−2 at Bondville, and between 3.9 and 5.3 m2 m−2 at
Mead. These predicted ranges were acceptable based on the
observed ranges at these two sites, except that the model over
predicted the maximum LAI observed for Mead during cer-
tain soybean years. For instance, in 2002, the maximum LAI
observed at Mead site was 3.0, while the mean LAI predicted
by SiBcrop was 3.9. Compared to the LAI estimates based on
NDVI in original SiB, SiBcrop predicted LAI values that had
better synchrony with the observed LAI in the field (Fig. 5).
In 1999, the NDVI-based LAI was higher at the initial phase
of the growing season and peaked at a later time than the LAI
observed in the field and that predicted by SiBcrop. This
pattern of variation in the remotely sensed NDVI could be
attributed to the mixed pixels (in the early phase), cloud con-
tamination and the interpolation scheme, as described before.
The regression between NDVI-based LAI in control runs and
observed data in 1999 (Fig. 5) had much lower R-sq (0.14)
and higher RMSE (2.22) compared to SiBcrop versus ob-
served data (R-sq=0.97 and RMSE=0.43). R-sq and RMSE
values for overall comparisons of original SiB and SiBcrop
against the observed data at different sites are given in Ta-
ble 2.

In addition to the prognostic equations in SiB, SiBcrop
predicted biomass carbon in different plant pools, LAI, etc.,
from the phenology scheme by the end of each day. The
variation in carbon in different plant pools until physiologi-
cal maturity at Bondville site is illustrated in Fig. 6. Among
the different plant pools, the highest amount of carbon was
observed for the products, and the total biomass (both above-
and below ground) estimated for maize was much higher
than that for soybean (Table 3). Maize in both Bondville
and Mead sites had 55–60% of the total carbon in the prod-
ucts at harvest (grains, cobs, and husks), while roots, leaves
and stems shared the remainder of the carbon. By converting
the biomass carbon to biomass (by multiplying by 2.2) and
considering a grain weight of about 80% of the total prod-
ucts at harvest (Heard, 2004), we estimated a Harvest Index
that ranged between 0.52 and 0.55, for maize at both sites.
These results are in agreement with the reported range (i.e.
0.4–0.58) by Prince et al. (2001) and Heard (2004; Harvest
Index 0.54). The average root:shoot ratio estimated at har-
vest across the maize years was 0.18. This was similar to the
average root:shoot ratio observed by Anderson (1988).

The aboveground and total biomass predicted for soybean
at Mead was slightly higher compared to Bondville (Table 3).
The predicted biomass of products (seeds and pods) at har-
vest ranged between 44–49% and 38-43% of the total soy-
bean biomass (across different years) at Bondville and Mead,
respectively. Considering that the 70% of the product at har-
vest (i.e. beans and pods together) was beans (Hanway and
Weber, 1971a, 1971b; Buyanovsky and Wagner, 1986), we
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estimated a Harvest Index that ranged between 0.37 and 0.41
during the years with soybean. This Harvest Index range fell
within the range (i.e. 0.37–0.45) reported by Rao et al. (2002)
and that reported by Spaeth et al. (1984; Harvest Index range
0.25–0.6)). The estimated average root:shoot ratio soybean
at harvest was 0.18. This ratio fell within the range (of 0.14–
0.19) observed by Allmaras et al. (1975), and it was slightly
higher than the value of 0.15 observed by Silvius et al. (1977)
for non-stressed plants, and the highest value (i.e. 0.126),
among the values reported by Taylor et al. (1982).

When the biomass carbon was converted to the biomass
in each plant pool, we found that the model predicted values
for both crops were acceptable based on the values found
in certain past studies (Taylor et al., 1982; Ritchie et al.,
1996; Heard, 2004). For instance, the average biomass
carbon predicted by SiBcrop for maize leaves, stems, and
products at harvest for Mead site were 103.5, 136.7, and
487.1 g C m−2, respectively. Assuming that carbon is 45%
of the total dry weight, the carbon content in maize leaves,
stems, and products according to Heard (2004) were 92.2,
120.3, and 476.7 g C m−2, respectively. Similarly, the aver-
age biomass carbon predicted by SiBcrop for soybean roots,
leaves, stems, and products at harvest for Bondville site were
58, 44.5, 115.4, and 186.2 g C m−2, respectively. Calculated
average carbon (i.e. 45% of dry weight) for rain fed soybean

Table 2. Results (R-sq and RMSE) for the comparisons of control
runs and SiBcrop against the observed data at Bondville and Mead.

Variable Site Regression R-sq RMSE
(against the
observed data)

NEE Bondville All years
(µmol m−2 s−1) (maize and soybean

years combined)
Control runs 0.30∗∗ 7.28
SiBcrop 0.58 5.42
Maize years
Control runs 0.35∗∗ 7.78
SiBcrop 0.68 6.68
Soybean years
Control runs 0.24 4.83
SiBcrop 0.36 3.58

Mead All years
Control runs 0.52∗∗ 5.25
SiBcrop 0.70 5.88
Maize years
Control runs 0.60∗∗ 5.1
SiBcrop 0.72 7.33
Soybean years
Control runs 0.51 6.82
SiBcrop 0.57 3.49

LAI Bondville Maize years
(m2 m−2) Control runs 0.41 1.68

SiBcrop 0.84 0.89
Soybean years
Control runs 0.45 1.55
SiBcrop 0.67 1.23

Mead Maize years
Control runs 0.35 2.11
SiBcrop 0.72 1.27
Soybean years
Control runs 0.60 0.72
SiBcrop 0.84 0.69

Biomass∗ Bondville All years 0.90 85.84
(g C m−2) Maize years 0.89 103.2

Soybean years 0.85 49.7

Mead All years 0.98 29.76
Maize years 0.98 32.24
Soybean years 0.97 23.61

∗ total aboveground biomass carbon predicted by SiBcrop against
the observed data;∗∗ Slope coefficient (β) was ≤0.5 in the re-
gression equation, suggesting that the predicted values change by
approximately half a unit, per unit change of the observed values
(making the r-sq meaningless for a 1:1 relationship).

leaves, stems, and products based on the dry weights reported
by Taylor et al. (1982) were 35.3, 111.0 and 180.0 g C m−2,
respectively. Compatibility of the predicted biomass values
by SiBcrop were further tested by the comparisons against
the measured total aboveground biomass (converted to car-
bon) for the two sites. The R-sq and RMSE values rele-
vant to biomass comparisons are given in Table 2. Although
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the biomass carbon values in both crops were closely sim-
ulated, predicted values were slightly higher than the ob-
served biomass at Mead site and mixed results were found for
Bondville (Fig. 7). The growth in SiBcrop is dependent on
variation in weather and the assimilation, which is limited by
enzyme kinetics (Farquhar et al., 1980) and stomatal physiol-
ogy (Collatz et al., 1991, 1992). The model does not capture
any impact from herbivory or weed control, etc. Thus the
slight deviation of the predicted values from observed data
might be indicative of the exact field conditions which might
also reflect the latter. Since the current version of SiBcrop is
based on the assumption that the crop plants are not nutrient
limited, it also does not capture any impact from fertilizer
application.

Seasonal and interannual variation in carbon fluxes of
cropland systems were relatively poorly predicted in the con-
trol simulations (Fig. 8a; Table 2). However, SiBcrop clearly
showed the rotation of maize (C4) and soybean (C3) in
the field, with maize having a much higher carbon uptake.
SiBcrop also better predicted the seasonality associated with
the crop growth cycle (Fig. 8b; Table 2). Similar results were
observed for Mead, as well (Fig. 11b; Table 2). With origi-

Table 3. Average predicted biomass.

Crop site Biomass carbon g m−2

Total Aboveground

Maize Bondville 931.3±31.2 790.7±22.4
Mead 852.1±18.8 727.2±4

Soybean Bondville 404.2±74 346.1±60
Mead 435±77.2 360±64.1

Wheat ARM-SGP 375.3±18.3 292.3±12.4

nal SiB, there was no synchrony between the NEE curves of
the predicted and observed data (Figs. 8a and 11a; Table 2).
However, with further modification of certain SiB parameter
values (Table 1), and by using predicted phenology, we were
able to improve the model performance significantly. Con-
sidering the presence of only maize during odd numbered
years (as in the field) and increase of Vmax and high temper-
ature inhibition for maize, allowance of removal of harvest,
and incorporating new phenology scheme in SiBcrop helped
improve the magnitude of predicted NEE and the compati-
bility with observed data in the field for maize (Figs. 9b and
11c; Table 2). Similarly, considering the presence of only
soybean in the field during even numbered years and predict-
ing carbon fluxes through LAI derived from the phenology
scheme, substantially improved the synchrony and compat-
ibility of the predicted values with observed NEE for soy-
bean (Fig. 10; Table 2). Overall, LAI, biomass, and NEE
predicted by SiBcrop had relatively higher R-sq and lower
RMSE values compared to the control runs. The new phenol-
ogy scheme within SiBcrop helped better predict the magni-
tude and seasonality of the carbon fluxes and LAI, compared
to the control simulation.

The highest NEE values predicted by SiBcrop for maize
were more than 80% of the observed values in the field.
The maximum predicted carbon drawdown by maize as rep-
resented in NEE, ranged between 15 and 20µmol m−2 s−1

in the annual cycles based on monthly averages, and
∼60µmol m−2 s−1 at sub hourly scale (Figs. 8 and 9). In the
diurnal cycle, the highest predicted NEE occurred between
12:00 and 03:00 p.m. NEE was positive before∼07:00 a.m.,
since it was dominated by respiration (Figs. 8c and 11d).

The predicted carbon fluxes for maize were mostly com-
parable to the observed fluxes, and occasionally there were
outliers in the observed data as well, which were more no-
ticeable in the data at sub hourly time scale.

The maximum NEE observed and predicted by SiBcrop
for the soybean years was∼5µmol m−2 s−1 in the annual
cycles based on monthly averages (Fig. 8b), and the max-
imum values at sub hourly scale were between 15 and
20µmol m−2 s−1 in both sites; however, observed maximum
was mostly between 20 and 30µmol m−2 s−1 at sub hourly
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Fig. 9. Predicted and observed sub hourly fluxes for the Bondville
site in a maize year (1999).

scale (Fig. 10). Results showed the lower carbon uptake due
to lower photosynthetic efficiency in soybean, compared to
maize, although soybean has a higher Vmax. The predicted
NEE values for soybean were still less than the observed val-
ues.

3.2 Simulations for winter wheat

The average maximum Leaf Area Index predicted for win-
ter wheat at ARM-SGP site was 3.0 m2 m−2, and predicted
LAI was within 0.5 m2 m−2 compared to the observed LAI
(Fig. 12 b). The predicted LAI had similar variation and good
synchrony with the observed LAI.

The sub hourly predicted NEE for wheat followed a sim-
ilar pattern of variation. However, the maximum observed
diurnal NEE was mostly between 20–30µmol m−2 s−1,
while the maximum predicted NEE was between 15 and
20µmol m−2 s−1 (Fig. 12a and 12d); the R-sq for the re-
gression between observed and predicted NEE was 0.4 and
the RMSE was 6.3µmol m−2 s−1. When the annual cy-
cles with monthly averages were taken, the model yielded
slightly higher NEE compared to the observed, although the
same pattern of variation could be seen with respect to sea-
sonality. Carbon uptake in early vegetative stages was rela-
tively low from planting towards the end of the year until the
spring green-up in the following year, during which period
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Fig. 10. Predicted and observed sub hourly fluxes for the Bondville
site in a soybean year (1998).

the plants also undergo vernalization (i.e. cold requirement
for the transition from vegetative to reproductive growth;
Bierhuzen, 1973; Brooking, 1996; Ritchie, 1991). Rapid
growth and higher carbon uptake (i.e. NEE) was observed
after the spring green-up in the following year (Fig. 12c).

According to SiBcrop simulations, the average to-
tal aboveground biomass carbon for winter wheat was
292 g m−2 (Table 3), which was consistent with the average
observed in the field, 270 g m−2, where the typical measure-
ment error was about 5%. The average harvest index based
on SiBcrop runs was 0.41, while the recorded harvest indices
for the crop usually ranged between 0.32 and 0.43 (Sharma
et al., 1987; Gent and Kyomoto, 1989; Prince et al., 2001).
The total biomass carbon averaged over the years with win-
ter wheat was 375 g C m−2. Considering a 45% carbon in
dry matter, this converts to 834 g m−2 dry matter. This falls
within the range of total dry matter weights given by Wil-
helm (1998) for winter wheat under different tillage and ni-
trogen fertilization rates (i.e. between 636 and 848 g m−2 dry
matter).

Overall, SiBcrop showed improved performance in pre-
dicting carbon fluxes on croplands, compared to the control
simulations with original SiB. However, SiBcrop still seems
to slightly underpredict the CO2 uptake at sub hourly scale,
mostly by C3 crops, although a similar pattern of variation
and seasonality was seen as observed in the field. So far
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we have developed these phenology schemes for three main
C3 and C4 crops, and our aim is to expand it to other major
crops. The current version of SiBcrop was developed to be
used within the continental United States, and model evalua-

tion in this particular study was done using three AmeriFlux
eddy covariance flux tower sites in the US midwest. How-
ever, we plan on wider use of the model, and thus further
model testing using more sites at locations with different cli-
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mates and weather variability is warranted. We plan to ex-
tend such applicability by adding more crop types and addi-
tional sites globally. In the future, SiBcrop will be coupled
with the Regional Atmospheric Modeling System (RAMS;
Pielke et al., 1992; Corbin et al., 2008), a mesoscale meteoro-
logical (non-hydrostatic) model, to estimate time-varying ex-
changes of carbon, water, and energy, and the performance of
this regional modeling system is planned to be tested against
the observations at a variety of spatial scales.

4 Conclusions

The phenology and physiology scheme we developed was
simple and detailed enough to predict LAI values to be used
within SiB. LAI and NEE produced by SiBcrop for maize,
which is a crop with C4 physiology, were closer in value
and had better synchrony with the observed data in the field,
compared to the original SiB model in which LAI (and thus
carbon flux estimation) were based on the remotely sensed
NDVI. Although the same trend was obvious for the C3
crops, soybean and wheat, the maximum sub hourly NEE
predicted for soybean was 20–30% lower than the maximum
NEE observed in the field.

Since SiB’s complex, process-based equations, parame-
ters, and stress factors, etc., are involved in the derivation of
daily carbon and energy fluxes, such a straight forward and
relatively simple phenology and physiology scheme seemed
to work well in reaching our objective (i.e. to improve the
prediction of carbon fluxes from croplands). The overall va-
lidity of the phenology scheme was further confirmed by the
LAI and biomass data from field observations and past stud-
ies.

Overall, compared to the control, SiBcrop better predicted
spring onset of growth (i.e. prediction of planting dates and
the crop growth following spring onset), which improved the
estimate of CO2 uptake, especially by maize. The advan-
tage of the new phenology scheme within SiBcrop includes
the prediction of biomass which can be evaluated against
crop yields, realistic treatment of fine-scale heterogeneity of
agro ecosystems, and eventual prediction of future fluxes, for
which no satellite data are available.
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