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Abstract 
We propose to develop, parameterize, and evaluate a global modeling system for 

simulating land-atmosphere exchanges of water, energy, and carbon that will be applied 
in both a prognostic climate model (Community Climate System Model, CCSM) and in a 
global operational diagnostic (data assimilation) model (Land Information System, LIS). 
The model will be based on improvements to the Community Land Model (CLM3) with 
extensions for prognostic phenology, ecosystem competition, subgrid-scale water 
redistribution, physiological stress, and canopy air space energy budget. The model will 
be parameterized using satellite products documenting fractional land coverage by plant 
functional types and the fraction of photosynthetically active radiation absorbed by plant 
canopies (FPAR). Model evaluation at multiple spatial scales will be performed using 
local measurements of micrometeorological fluxes and storage of water and carbon, 
stream discharge from instrumented catchments, and regional information about snow 
cover and water storage. The modeling system and related data sets will be delivered to 
both the CCSM and LIS groups through structured collaborations (see attached letters). 



1. Introduction 
Land-atmosphere interactions are now widely recognized to play important roles in 

the distribution and availability of water resources for society and also comprise a major 
component of climate feedback and climate change. Prognostic simulation of land-
atmosphere interaction with respect to climate variability and change requires treatment 
of changing distributions of transpiring leaves in response to seasonal, interannual, and 
longer-term changes in weather and climate. On decadal and longer time scales, these 
variations include ecosystem disturbance (e.g., harvest, disease, and fire), growth, and 
succession: so-called Dynamic Global Vegetation Models (DGVMs) are now recognized 
to be crucial to simulation of past or future climates (e.g., Prentice et al, 1992; Woodward 
et al, 2000; Thonicke et al, 2001; Sitch et al, 2003). DGVMs simulate changes in the 
geographic distribution of vegetation that are driven by changing climate, and also 
contribute to changes in physical climate itself.  

At shorter time scales, changes in the state of the vegetated land surface can impact 
physical climate and hydrology, even given a fixed distribution of major vegetation types. 
During transitional seasons (spring and fall), phenological changes (e.g., emergence and 
senescence of leaves) can have profound impacts on ecosystem-level transpiration and 
Bowen ratio (Hogg et al. 2000; Fitzjarrald et al. 2001; Schwartz and Crawford 2001), and 
therefore the temperature and circulation patterns of the overlying atmosphere 
(Tsvetsinskayaet al 2001; Lu et al , 2001; Lu and Shuttleworth, 2002).  Springtime 
emergence of leaves in seasonally cold climates is not random, but rather tends to occur 
systematically during periods of unseasonably warm weather. Levis and Bonan (2004) 
found that simulation of temperature and circulation patterns was substantially improved 
by including an algorithm to predict the emergence of a transpiring canopy in the land-
surface component of a climate model. Such prognostic phenology is a component of  
DGVMs, which typically simulate the dynamics among competing types of plants in an 
ecosystem to update their distributions. Successful simulation of seasonal transitions is 
therefore an important criterion for evaluation of DGVM logic.  

The need to predict hydrologic change as a component of climate change has led to a 
proliferation of hydrologic submodels as climate model components, and these 
submodels are increasingly being used diagnostically in data assimilation (“nowcast” or 
“hindcast” mode, e.g., Mitchell et al, 2004; Rodell et al, 2004). This application is 
analogous to the important role of numerical weather forecasting and reanalysis, three 
decades of which has established the credibility of the physics and numerics used in 
climate models.  Using many data streams (precipitation, surface temperature and 
humidity, radiation, vegetation and soils, etc), diagnostic hydrologic models characterize 
time-space variability in water and energy fluxes and storage. Hydrologic data 
assimilation provides important observationally-based information to land managers and 
the public. Being confronted with model error and bias on a daily basis allows 
hydrologists to gain crucial insight into model behavior and develop predictive skill 
which greatly enhances the prospects for prediction of future changes.  

Most diagnostic analyses of land-atmosphere interaction still prescribe both the 
geographic distribution of plant types (“biomes”) and seasonal changes in their 
transpiring leaf area index (LAI). This is done either according to “look-up tables” which 



relate LAI by biome to the time of year (e.g., Dai et al, 2003) or by using LAI derived 
from satellite imagery (e.g., Sellers et al, 1996b; Lu et al, 2001). An important advantage 
of the satellite approach is that it is intended to capture realistic spatial, seasonal, and 
interannual patterns in vegetation and therefore lead to more realistic analyses. An 
unfortunate consequence is that this approach fails to reveal biases in prognostic 
phenology or dynamic vegetation algorithms that must be used for simulations of longer-
term climate change, and therefore an important linkage between diagnostic and 
predictive modeling is forsaken. 

Another limitation of hydrologic data assimilation that uses prescribed phenology 
from satellite imagery is due to “contamination” of imagery by clouds. Even partial 
obscuration of the land surface by clouds reduces vegetation indices based on optical 
remote sensing. This has led to the widespread practice of various forms of “maximum-
value compositing” of vegetation indices, in which a number of images are processed to 
obtain the greenest value of each pixel during the compositing time period to reduce the 
impact of cloud contamination (e.g., Holben, 1986; Los et al, 2000; Myneni et al, 2002).  

Although compositing produces a “cleaner” (less noisy) LAI timeseries at the pixel 
level, it invariably leads to overestimation of the length and underestimation of the 
interannual variability of the growing (transpiration) season. Consider the case of 
monthly maximum-value compositing during the spring transition. If leaves emerge at a 
given location in late April, for example, an optical vegetation index (e.g., Normalized 
Difference Vegetation Index, NDVI, Los et al, 2000) will undergo an upward trend 
during the month. The algorithm will therefore always choose a value for the month that 
represents conditions on a clear day near the very end of the month, when LAI is highest, 
and assign that value as a mean for the whole month. An analogous effect in autumn will 
assign a systematically high value to the final period of greenness which will most likely 
be derived from a scene observed near the beginning of the compositing period. The 
problem is exacerbated if monthly composites are assigned to represent mid-month times 
and linear interpolation between monthly values is used (Sellers et al, 1996). In such an 
application, onset of greenness may occur during the last week of April, leading to a high 
LAI assigned to represent conditions on April 15, and interpolation to this high value 
would begin on March 16, nearly 1.5 months too early! In addition to systematic 
overestimation of growing-season length, this procedure obscures interannual variability 
because the compositing and averaging periods are longer than the typical variation in 
onset of greenness from year to year or due to secular trends (Myneni et al, 1997; 
Schaefer et al, 2002).  It is important to note that LAI derived from the MODIS sensor 
(Myneni et al, 2002) is based on shorter (8-day) compositing periods, an so suffers less 
egregious time aliasing than monthly composited data described above. This is a matter 
of degree, however, and represents a “trade-off” in that more cloud contamination is 
tolerated (especially in the more-cloudy tropics), leading to more spurious high-
frequency noise.  

Prognostic phenology algorithms typically diagnose onset of greenness in seasonally 
cold (“summergreen”) ecosystems using a thermal sum (growing degree days, e.g., 
Hunter and Lechowicz, 1992; Caprio, 1993) after fulfilling a chilling requirement (e.g., 
Kramer, 1994).  Such models have long been evaluated by comparison to phenological 
datasets derived from field observations, but such data are of limited applicability at 



olarge scales because they usually represent conditions for single species (e.g., Defila and 
Clot, 2001), whereas global vegetation models run at coarser scales must inevitably rely 
on assemblages in biomes or plant functional types. White et al (1997) solved this 
problem by using individual pixel timeseries of daily NDVI (not maximum-value 
composites) to develop an empirical algorithm of this type for use in dynamic vegetation 
models. Stöckli and Vidale (2004) used the 20-year record of NDVI measured by the 
NOAA Advanced Very High Resolution Radiometer (AVHRR) to study phenological 
variability and trends in Europe, and found strong climate-related interannual variability 
and secular trends. Although more attention has been devoted to cold-deciduous 
(“summergreen”) phenology in vegetation models, a related problem is the prediction of 
LAI in tropical and arid or semiarid (“raingreen”) ecosystems that grow and lose leaves 
due to seasonal and interannual variations in precipitation. Prediction of phenological 
changes in these drought-deciduous ecosystems is more complicated than in 
summergreen systems because it is tied closely to soil moisture, vertical root distribution, 
and physiological stress. Finally, agricultural systems pose a unique challenge to 
prognostic phenology research and hydrologic modeling because seasonal changes in 
their leaf area is managed by people for profit. 

Another approach to ecosystem phenology involves tracking carbon gain by 
photosynthesis; allocation of photosynthate to leaves, stems, and roots; and losses by 
growth and maintenance respiration. In this biogeochemical approach, leaves are grown 
when they provide ecological benefit by adding to the net capacity of the ecosystem to fix 
carbon, and are lost when maintenance costs in respiration exceed potential carbon gain 
(e.g., Kikuzawa, 1995). This approach is important because it can directly link phenology 
and canopy development with longer-term ecosystem dynamics that are necessary for 
simulation of land-atmosphere interactions during climate change.  

We propose a three-year program of research that will lead to the development and 
evaluation of a Vegetation Modeling System (VMS) for improved diagnostic modeling of 
land-atmosphere exchanges of water and energy that includes global prediction of leaf-
area index. The VMS will be developed from existing component models (section 2): the 
Community Land Model (CLM), Biome-BGC (Running and Hunt, 1993; Thornton 1998; 
White et al, 2000), and the Simple Biosphere Model (SiB, Sellers et al, 1996; Baker et al, 
2003). The VMS will include options for fairly simple climate-based prognostic 
phenology and for more dynamic phenology based on biogeochemical cycling and 
allocation of nutrients and the fate of organic matter, and will be parameterized from 
remotely-sensed data (Section 3). The system will include improved representations of 
both vertical and (subgrid-scale) horizontal redistribution of soil moisture and its 
interaction with root distribution in modulating physiological stress and the temporal 
dynamics of drought-deciduous ecosystems. It will be evaluated against observations 
using eddy covariance records, instrumented catchments, and regional-scale water 
storage in snow, surface water, and soil (section 4). VMS components and input data sets 
will be developed to run within the Land Information System (LIS, Kumar et al, 2005; 
Tian et al, 2005; http://lis.gsfc.nasa.gov).  

The proposed research directly addresses the  “NEWS Challenge” outlined in the 
NRA: “documenting and enabling improved, observationally based, predictions of water 
and energy cycle consequences of Earth system variability and change, by developing, 



testing, and implementing approaches using innovative global environmental information 
from NASA’s research programs that contribute to enhanced predictive capability for the 
water and energy cycles.” We will work closely with our collaborators to transfer our 
results to the Land Information System (LIS) for high-resolution diagnostic modeling and 
assimilation of hydrologic data and to the Community Climate System Model (CCSM) 
for hydrologic prediction of climate change, thereby making decisive progress toward 
assessments of natural variability in surface and subsurface moisture and energy and in 
improved water cycle forecasts for use in Decision Support Systems on the Water and 
Energy Cycle Roadmap. Our phenology and vegetation dynamics research will use 
multiyear timeseries of optical imagery from space and multiple NASA data products to 
address a persistent bias in the timing of seasonal canopy development (LAI), and will 
combine ecophysiology and carbon and nitrogen biogeochemistry with soil and snow 
hydrology, spatial scaling, and data assimilation. These elements of the proposed research 
are specifically solicited under “NEWS Discovery Investigations” on pp 20-21 of the 
NRA. 

2. Model Description 
The Community Land Model (CLM) has been developed from previous model 

components by a large number of researchers (Zeng et al, 2002; Dai et al, 2003), and is 
currently being run in the LIS (Kumar et al, 2005; Tian et al, 2005; 
http://lis.gsfc.nasa.gov). It has one vegetation layer, 10 unevenly spaced vertical soil 
layers, and up to 5 snow layers. In the LIS, seasonal phenology is derived from monthly 
mean (temporally smoothed) LAI obtained from MODIS imagery (C. Peters-Lidard, 
personal communication), which ties simulations to observed space/time variations, but 
leads unavoidably to aliasing in seasonal transitions as outlined above. The CLM has 
continued to evolve as the land component of the Community Climate System Model 
(Bonan et al, 2002a; Oleson et al, 2004), in which a large community of researchers 
develop and evaluate model improvements through a structured set of Working Groups 
(http://www.ccsm.ucar.edu).  The most significant development in the CLM since its 
incorporation into the LIS is the reorganization of the grid structure into collocated 
patches of plant functional types (PFTs, replacing assemblages or biomes, Bonan et al, 
2002b), and the subsequent introduction of competitive dynamics transforming CLM into 
a DGVM (Bonan et al, 2003; Levis et al, 2004; Levis and Bonan, 2004).  

Horizontal land surface heterogeneity is represented by a nested subgrid hierarchy in 
which each atmospheric grid cell is composed of fixed geographic landunits (e.g., lakes, 
cities, and vegetated), soil columns, and co-existing plant functional types (PFTs) which 
compete for water and other resources (Fig 1).  Biophysical processes are simulated for 
each subgrid unit landunit, column, and PFT) independently, and prognostic variables are 
maintained for each subgrid unit. Vertical heterogeneity is represented by a single 
vegetation layer, 10 layers for soil, and up to five layers for snow, depending on the snow 
depth. 

The CLM3-DGVM simulates the distribution and structure of natural vegetation 
dynamically, using mechanistic parameterizations of large-scale vegetation processes 
(Foley et al. 1996; Brovkin et al. 1997; Friend et al. 1997; Cox et al. 1998; Potter and 
Klooster 1999; Woodward et al. 2000; Sitch et al. 2003). Each plant functional type (e.g., 



broadleaf deciduous trees, evergreen 
deciduous trees, C3 grass) is 
represented by an individual plant with 
the average biomass, crown area, 
height, and stem diameter of its 
population, by the number of 
individuals in the population, and by 
the fractional cover in the grid cell 
(Bonan et al. 2003). With dynamic 
vegetation enabled, vegetation cover 
and leaf area index are predicted rather 
than obtained from prescribed surface 
datasets. Community composition and 
ecosystem structure are updated with 
an annual time step in response to 
establishment of new plants, resource 
competition, growth, mortality, and 
fire. An algorithm for leaf phenology 
(similar to Kucharik et al. 2000) 
updates leaf area index daily in response to air temperature for summergreen (cold 
deciduous) plants and soil water for raingreen (drought deciduous) plants.  

In the CLM3-DGVM phenology model, leaves emerge on summergreen trees when 
the accumulated growing-degree-days above 0°C exceed 100 days. Leaf emergence 
occurs over a period equal to 50 degree-days. Leaf senescence occurs at a rate of 1/15 
day-1. More specifically, leaf emergence and senescence for summergreen trees are 
represented by the fraction, φ, of the annual maximum leaf area index, LAImax, present on 
a plant on a given day, where emergence: 

φ = (GDD0°C −100)/50    when T10d ≥ max (Tf, Tc + 5),               (1)             

and senescence: 

φ = φ − 1/15        when T10d ≤ max (Tf, Tc + 5), and    (2) 

LAIdaily = φ LAImax        (3) 

where φ is constraint to be between zero and one, T10d is the 10-day running mean of 
surface air temperature (K), Tf  equals 273.16 K, and Tc is the 20–yr running mean of the 
minimum monthly temperature (K). Here GDD0°C is the running accumulation of growing 
degree days above 0°C, smoothed out by using T10d, and reset to 0 when T10d < Tf.  

Photosynthetic carbon assimilation, A, is calculated using enzyme  kinetics (Farquhar 
et al, 1980) and is linked to stomatal conductance, gs, by the Ball-Berry-Collatz 
parameterization (Collatz et al, 1991; Sellers et al, 1996a; Bonan, 1996). The rate of 
photosynthesis depends on light, temperature, CO2 concentration, and soil water. In 
particular, photosynthesis is precluded with temperatures below freezing (-5 °C for 
needleleaf trees) and increases with warmer temperatures up to an optimal temperature of 
between 25°C and 30°C depending on the plant type. Use of 100 degree-day threshold 

Figure 0: Conceptual organization of subgrid-cell 
heterogeneity in CLM 



above 0°C for leaf emergence in Eqn. (1) ensures that leaves emerge when conditions 
will also support photosynthesis.  

Working with our collaborators at NCAR, we will also develop and test new 
phenological algorithms based on the biogeochemical benefit and loss approach in 
CLM3. This will entail specification of allocation of new photosynthate to leaves, stems 
(wood), and roots based on plant functional type and ecosystem conditions (limitations to 
growth by availability of light, water, and nutrients). Research currently underway at 
NCAR (Peter Thornton, personal communication) includes the development of 
algorithms for tracking carbon and nitrogen in soils, plants, and litter, and both N-
limitation and C & N allocation within the ecosystem. This work is coordinated through 
the CCSM Land and Biogeochemistry Working Groups, of which the P.I. is a member, 
and is based on similar logic in Biome-BGC (Running and Hunt 1993; Thornton, 1998; 
White et al, 2000). This version of the model is referred to as CLM3-CN. Phenology in 
CLM-CN is parameterized according to photosynthetic allocation to leaves and the 
associated carbon cost in maintenance respiration, which in turn depends on leaf nitrogen. 
The new modeling system will link exchanges of water and energy with those of carbon 
and nitrogen in a biophysically and biogeochemically realistic way, and will allow a new 
set of observational constraints (e.g., biomass surveys, soil carbon, atmospheric trace gas 
inversions of CO2) to be brought to bear on hydrologic problems.  

Working with our collaborators at NCAR and in the CCSM Working Groups, we will 
also modify the energy balance closure logic of CLM3-CN to include prognostic solution 
for canopy-air-space temperature, water vapor mixing ratio, and CO2. This approach 
introduces a finite mass of atmosphere in contact with the vegattion canopy, leading to 
more stable numerical solution and much better behavior during transitions from 
turbulent to stable aerodynamics and vice versa. It also provides a framework for later 
addition of model functionality such as multilayer canopies and radiative transfer. We 
have already implemented this approach in SiB2.5, with excellent results (Baker et al, 
2003; Stockli and Vidale, 2005).  

CLM tracks changes in soil moisture in 10 layers in the vertical in each soil column, 
drawing a fraction of the water required for transpiration from the roots in each layer.   
The distribution of transpiration loss in the vertical, and the overall effect of vertical 
distribution of soil moisture, is crucial to the simulation of physiological ecosystem stress 
due to drought. The current version of CLM3 is overly sensitive to dry soils (P. Thornton, 
personal communication). We will experiment with new treatments of rooting 
distribution, transpiration, physiological stress, and hydraulic lift in the multilayer soil. 
The model already includes a simplified version of the subgrid-scale hydrologic 
redistribution algorithm TOPMODEL, which is based on topographic statistics. We will 
experiment with the TOPMODEL implementation to develop a new treatment of subgrid-
scale variations in ecosystem physiological stress, possibly linked to the presence of 
patches of plant functional types within each soil column. A similar approach was used 
with SiB2.5 by Stockli et al (2005) and compared very favorably with catchment-scale 
stream discharge. 



3. Parameterization of phenological submodel by assimilation of AVHRR 
and MODIS observations  
The prognostic phenology logic in CLM-DGVM-CN contains many parameters. 

Some are generic to even simple phenology codes (e.g., the chilling requirement and 
degree-day thresholds for emergence of cold deciduous canopies, conditions for abcission 
of leaves, the dependence of these on vegetation type). The biogeochemical and 
ecosystem competition logic embodied in the new model provides flexibility for 
simulation of future climates and linkages to other parts of the Earth system, but 
introduces even more parameters associated with nutrient cycling, resource limitation, 
carbon allocation, and turnover times. Some of these parameters have been optimized in 
earlier models that use similar algorithms (e.g., CASA, Potter et al, 1993; CENTURY, 
Parton, 1996; Biome-BGC, White et al, 2000), and we will start with these 
parameterizations in VMS. In addition, we will conduct an ambitious research effort on 
parameter estimation in the phenological submodel by optimizing some of the most 
sensitive yet poorly known parameters for each plant functional type using satellite 
observations.  In addition to the development of new phenology logic for land surface 
models and data assimilation systems, this work is expected to lead to new LAI data that 
can be used even if a modeler chooses not to implement the more complex 
biogeochemical logic of CLM-CN. 

A particular strength of the VMS is the flexibility inherent in “continuous” mixtures 
of plant functional types, rather than predefined “discrete” biomes. This feature also 
poses a challenge for parameterizing phenology. We will develop high-resolution model 
parameter sets for subdomains in “end-member” regions of interest (boreal forest, 
temperate forest, C3 and C4 temperate grasslands, subtropical grasslands, tropical forests, 
croplands of various kinds, and pastures), in which we will map topography, soils, and all 
model parameters from available geographic data. We will work closely with our 
colleagues at NASA Goddard (see attached letter of collaboration) to parameterizse each 
subdomain in such a way that the VMS could be run in the LIS environment, and will 
obtain 1-km meteorological driver data for each subdomain. Initial distributions of plant 
functional type within each 1-km pixel will be specified from the MODIS continuous 
vegetation fields product, which has a one-to-one correspondence with the functional 
types simulated in CLM3-DGVM (Hansen et al, 2000, 2003).   

We will then perform ensembles of multiyear simulations on the high-resolution 
subdomains, and use a radiative transfer calculation to calculate 1-km FPAR for each 
pixel each day, as was done by Tian et al (2004).  Computed FPAR will be compared to 
MODIS FPAR pixel-by-pixel, for clearsky measurements made on real dates (not on 8-
day composites). These runs will be performed in an ensemble framework, and 
parameters for each plant functional type will be optimized following the method of 
Zupanski et al (2005a,b). Finally, we will aggregate to coarser resolution (e.g., 50 km) 
and run the model at global scale using downscaled weather drivers (ECMWF 
reanalysis), and compare simulated FPAR and NDVI to the AVHRR record obtained 
since 1981. 

 



4. Model Evaluation 
We will use an integrated approach including satellite remote sensing products, flux 

tower observations and catchment-scale observations, as proposed by Running et al. 
(1999) and Turner et al. (2004), to learn more about the land surface processes simulated 
by the proposed VMS. Simulations and observations will be compared at selected field 
sites (e.g., flux towers, instrumented catchments) for each of the plant functional types 
defined by CLM. We will test the model over a wide range of spatial scales, from 
individual sites to regional scale. Testing areas will be chosen to include the most 
complete vegetation-related datasets available with regards to both site and spatially 
distributed data, and cover as many diversified climate-ecosystem zones as possible, and 
perform un-tuned model comparisons to observartions, which guarantees that the 
evaluation results can be generalized for global coupled or off-line simulations (as in 
Stockli and Vidale, 2004). These are the observational datasets we will use: 

The evaluation of the proposed VMS will be performed in several steps, focusing first 
on process scales and aggregating to increasingly large areas:  

1. testing the predictions of vegetation phenology against local observations: 

• IPG: observed phenology in phenological gardens (20 sites, 47 year long 
dataset, Europe only, http://www.agrar.hu-
berlin.de/pflanzenbau/agrarmet/ipg_2.html) 

2. understanding the sensitivity of modeled land surface heat, water and carbon 
fluxes to prognostic vegetation phenology at local scales; 

• FLUXNET: a global array of over 200 flux towers, providing multi-year time-
series (1995-present) of eddy covariance water, energy, momentum, and 
carbon fluxes, soil temperature and moisture profiles, micrometeorological 
measurements (Baldocchi et al., 2001). 

• To evaluate our improved treatment of physiological stress, we will focus on a 
variety of sites that have been shown to make well-observed transitions from 
unstressed to stressed conditions and back (seasonal drought in Oregon and 
Oklahoma; interannual changes in dry-season duration and severity at the 
Tapajos sites in Brazil (Humberto Rocha, LBA, personal communication), and 
severe seasonal drought in southern Africa (Niall Hanan, personal 
communication).  

3. evaluation of biogeochemical cycling against local measurements of 
biogeochemical fluxes and pool sizes in well-studied ecosystems; 

• LTER: gound observed vegetation states (26 sites, 20 year long dataset, USA 
only, http://www.lternet.edu/ ) 

4. Comparison of aggregated spatially-explicit predictions of soil moisture and 
runoff against soil moisture data and stream discharge measured from gauged 
catchments; 

• Oklahoma mesonet (Illston et al, 2003) 



• SMEX campaigns in Oklahoma, Alabama, Georgia and Brazil). More detailed  
information regarding the SMEX03, including AMSR images, photos, and  
experiment plans, can be found at: http://hydrolab.arsusda.gov/smex03/ 

• GRDC: Global river runoff time-series of catchments and sub-catchments, 
worldwide availability and long-term coverage. (http://grdc.bafg.de) 

5. Comparison of regionally-aggregated prediction of  snowpack distribution and 
total water storage against global satellite observations 

• snow depth and cover data NASA Cold Land Processes Experiment (CLPX) 
(http://www.nohrsc.nws.gov/~cline/), and NOAA National Operational 
Hydrologic Remote Sensing Center (NOHRSC) (http://www.nohrsc.nws.gov/), 
MODIS (NASA’s TERRA and AQUA satellites) snow cover (1km, global) 

• GRACE (NASA’s Gravity Recovery And Climate Experiment): monitoring 
capability of the large-scale water cycle, especially of changes in the terrestrial 
water storage, including deep groundwater and snow depth (global coverage, 
2002-present).  

The successful application of the above procedures guarantees that the new model 
framework provides an improved parameterization of phenology in operational land 
surface model computations (e.g. LIS, GLDAS, NLDAS). We will next conduct land 
surface model evaluations to understand whether an improved representation of spatial, 
seasonal and interannual variability of vegetation phenology allows to better model land 
surface heat, water and carbon fluxes. The prediction of these fluxes is of central interest 
for agricultural production, water resource management, and flood, weather, and climate 
predictions (Kumar et al., 2004). 

5. Products & technology transfer 
The parameterization and high-resolution evaluation of a major component of a the 

Community Climate System Model will allow this work to have wide applicability to a 

Figure 2: Computational architecture of 1-km simulations in LIS. Tian et al (2005) 



large group of climate researchers. The PI already participates in a well-organized effort 
to improve this model through the CCSM Working Group structure (see attached letter of 
collaboration).  

We will also work closely with our collaborators at NASA to port our new modeling 
system for use  in the land information system (lis.gsfc.nasa.gov, see attached letter of 
collaboration). It may well be that the full dynamic vegetation logic is too 
computationally expensive to be run online in the operational LIS runtime environment. 
We will cooperate with LIS personnel to develop code that is sufficiently compact and 
efficient to use operationally at 1-km resolution (Fig 2). In addition, we will port all 
necessary data sets to work in LIS, including an offline phenology “product” that can be 
used offline of the VMS within the LIS. 

Finally, we note the opportunities for transfer of VMS functionality to carbon cycle 
models and observing systems being developed for the North American Carbon Program 
(NACP). The PI currently serves as the Chair of the Science Steering Group for NACP, 
and is developing Mesoscale data assimilation (under separate funding), which would be 
a natural vehicle for future application of the VMS. 
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