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Data fusion to determine North American sources and sinks of carbon dioxide at 
high spatial and temporal resolution from 2004 to 2008 
 
Co-Principal Investigators: A. Scott Denning, Colorado State University 
Kenneth J. Davis, Klaus Keller, Natasha R. Miles and Scott J. Richardson, The 
Pennsylvania State University 
 
1. Introduction 
 
There is strong evidence that North America terrestrial ecosystems are currently a 
substantial sink of carbon dioxide.  The magnitude of the sink has a large range of 
uncertainty, we have a limited understanding of how it has varied over time, and the 
processes responsible for this sink are not entirely clear.  Our limited understanding is 
linked to methodological limits, as well as limited continental data.  Quantifying spatial 
patterns and temporal variability of carbon dioxide sources and sinks at continental to 
regional scales remains a challenging problem.  
 
In response to this challenge a rapid expansion of the N. American carbon cycle 
observational network is underway.  This expansion includes a network (AmeriFlux) of 
continuous, eddy-covariance based CO2 flux measurements and a network of continuous, 
continental CO2 mixing ratio observations of comparable precision and accuracy to the 
marine flask network.  Inverse studies of the N. American carbon budget have only begun 
to utilize these emerging data sources directly (i.e. tower fluxes and continuous 
continental mixing ratio observations), and how to best utilize these data together is a 
topic of great uncertainty and intensive research.  This is the focus area of our research. 
We are conducting a program of research that will turn the emerging wealth of data in N. 
America to our advantage.  This will be accomplished by a continued collaboration 
between research groups at the forefronts of terrestrial boundary layer CO2 flux and 
mixing ratio observations, and high resolution, land-atmosphere carbon cycle modeling.  
This collaboration has resulted in substantial progress towards fusion of flux and mixing 
ratio observations in a coupled land-atmosphere data assimilation framework. This 
project will further develop methods for fusion of CO2 flux and mixing ratio observations 
via inverse modeling incorporating the N. American CO2 mixing ratio observational 
network, forwards modeling built upon the N. American flux network, and cross-
evaluation of these two approaches.  We have published analyses of the mechanisms 
controlling interannual variability of carbon fluxes over North America (Baker et al, 
2010), and a separate estimate of photosynthesis and respiration derived from data fusion 
for North America in 2004 (Schuh et al, 2010). Further, we will apply the methods 
already developed via this collaborative effort to examine interannual variability of N. 
American carbon fluxes from 2004 to 2008. 
 
Hypotheses: 

1) Flux and mixing ratio observations can be merged into a consistent analysis at 
synoptic, seasonal, and interannual time scales;  

2) The N. American CO2 budget will be well constrained by our data analysis 
system;  
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3) The 2004-2008 record of N. American net annual terrestrial CO2 fluxes will show 
a persistent net sink of carbon of location and magnitude consistent with previous 
estimates based on ecological inventory methods, and;  

4) The same flux record will yield detectable, spatially-resolved, climate-driven 
interannual variability.  

Expected products include:  
1) a growing database of flux-tower based, continuous CO2 mixing ratio 

observations suitable for application to continental inversions;  

2) a comprehensive analysis system for estimation of monthly CO2 exchange across 
N. America at high spatial resolution;  

3) significant reduction in the uncertainty in the annual net N. American CO2 flux 
and its interannual variations, and;  

4) spatially and temporally resolved terrestrial CO2 fluxes and uncertainty estimates 
for 2004 through 2008 encompassing all of N. America.  

Ultimately, our results will support the development of dynamic predictions of the future 
carbon cycle by providing a regionally and temporally resolved multi-year record of 
whole continent terrestrial carbon fluxes needed to evaluate continental-scale models.   
 
2. Research highlights. 
As part of the North American Carbon Program, we worked with our colleagues at the 
Pennsylvania State University to build a network of highly-calibrated observations of 
CO2 mixing ratio over North America from 2007 through 2009. We also developed and 
tested innovative data fusion methods to combine these data with a variety of remote 
sensing and in-situ data products to obtain highly-resolved maps of CO2 sources and 
sinks over North America.  
 
The project has been a resounding success. Besides pioneering the field and modeling 
methodology, we published a detailed analysis of the treatment of spatial errors in 
atmospheric inversions of CO2 (Schuh et al, 2009); the first continental-scale maps of the 
terrestrial carbon budget using mesoscale transport models (Schuh et al, 2010); an 
analysis of the processes that control regional variations and interannual variations in 
carbon fluxes over North America (Baker et al, 2010); an analysis of the effect of crops 
on atmospheric CO2 in the USA (Corbin et al, 2010); a method for treatment of 
continuous continental CO2 data in global inversions (Butler et al, 2010); systematic 
error analysis for high-resolution inversions (Lauvaux et al, 2012a,b); and three years’ 
worth of measurements of fine-scale variations of CO2 over the US Midwest (Miles et al, 
2012).  
 
Arguably the most important result of the project has been the unprecedented quantitative 
evaluation of regional inverse modeling using atmospheric CO2 measurements compared 
to some of the most detailed and spatially resolved carbon flux inventory data ever 
collected (Schuh et al, 2012). This last paper (in the final stages of review for Global 
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Change Biology) shows that three different inverse models applied over three very 
different spatial domains (global, continental, and regional) are all able to recover annual 
carbon budgets over the midcontinent region within the uncertainty of the bottom-up 
inventory. No previous study has ever been able to evaluate the accuracy of annual flux 
estimates before. We have also documented the effects of transport errors, changes in 
prior flux estimates, resolution, treatment of lateral boundary inflows, and measurement 
density so that future studies can better merge top-down and bottom up constraints on 
carbon fluxes with more confidence.  
 
This study has paved the way for future studies of regional carbon balance using 
continuous in-situ measurements and high-resolution transport models, which is very 
exciting now that observing networks supported by both NOAA and EarthNetworks are 
maturing. The future of data fusion for carbon cycle science is bright. 
  
3. Research products. 
Information concerning instrumentation and sites collecting data can be found at 
http://www.amerifluxco2.psu.edu and http://ring2.psu.edu.  
Results of our regional inversion were submitted to the North American Carbon Program 
regional interim synthesis activity for inclusion in that comparison project. 
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4.b) Reports to agencies: 
 
4.c) Conference proceedings: 
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4.d) Other Presentations: 
Schuh, A., A.S. Denning, M. Uliasz, N.R. Miles, K.J. Davis, and S.J. Richardson, 

Regional-scale atmospheric measurements of CO2 sources and sinks. Plenary talk, 
Air and Waste Management Association First International Greenhouse Gas 
Measurement Symposium, 23-25 March, 2009, San Francisco, CA. 

Participation in the 2nd North American Carbon Program All-Investigators Meeting.  17-
20 February, 2009, San Diego, CA, including a project-related presentations: 
 
Co-convener of session on Integrated Studies of Regional Carbon Exchange at the Fall 
Meeting of the American Geophysical Union, December, 2008, San Francisco, CA. 
 
5. Student degrees supported. 
Ph.D. dissertation: 
Schuh, Andrew.  Primary support from this project.  
Butler, Martha. 
 
6. Final Technical Report  
 
6.1 Observations 
This project builds upon the NOAA Global Monitoring Division (GMD) network of flask 
measurements (e.g. Conway et al., 1994), aircraft profiles and tall towers (e.g. Bakwin et 
al., 1998), and enhances this network with high-quality CO2 mixing ratio measurements 
on 13 AmeriFlux towers, 5 of whose CO2 instrumentation are maintained via this project, 
and all of whose mixing ratio data are being combined to make a uniform data product 
via this project. We will also work with 3 Fluxnet Canada sites with similar data.  Note 
that most flux towers do not maintain CO2 measurements of sufficient absolute accuracy 
or long-term precision to be useful in atmospheric inversion studies.  These data will be 
further complemented by a mountaintop network in the Rockies (Fig. 1). 
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The surface layer mixing ratios measured at these towers, when subsampled for midday 
conditions, are very similar to the mixing ratio of the mixed layer (e.g. Yi et al., 2004).  
Butler et al., (in preparation) shows that further, the small difference between the surface 
layer mixing ratio and the mid-convective boundary layer (CBL) can be estimated from 
micrometeorological scaling arguments that have been fitted to the CO2 flux and mixing 
ratio measurements from the 447 m tall WLEF tower.  The average bias for hourly data is 
less than 0.2 ppm in summer, less than 0.1 ppm in spring and fall, and less than 0.5 ppm 
in winter (when mixing is the weakest).  The average annual bias for houly data is less 
than 0.05 ppm.  Data from the surface layer, subsampled for midday conditions, contain 
abundant large-scale synoptic and seasonal structure (e.g. Bakwin et al., 2004; Hurwitz et 
al., 2004).   
The data from the network are available at http://ring2.psu.edu and 
http://amerifluxco2.psu.edu, as described in the annual progress report of our co-
Investigators at Penn State.   
 
6.2 Assimilation of CO2 Mixing Ratio data into Models 
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A fundamental assumption in the two-step assimilation procedure we propose is that 
high-frequency variations in NEE are driven by radiation and weather and can be 
successfully modeled by the flux-tower-optimized SiB-CASA. This allows us to 
accumulate mixing ratio data over a longer period of time to estimate spatial variations in 
state variables (e.g., carbon stocks) that control the lower frequency source-sink 
dynamics. We use the model and environmental data to account for spatial and high-
frequency time variations of photosynthesis and respiration by assuming that they are 
driven by well-understood and easily modeled processes (vegetation distribution, 
radiation, temperature, soil moisture), then solve for unknown multiplicative biases in 
each component flux after smoothing in space and time. This is accomplished by 
convolving the influence functions generated from LPDM with gridded photosynthesis 
(gross primary production, GPP) and ecosystem respiration (RESP) at each time step in 
SiB-CASA.  The net ecosystem exchange (NEE) is composed of these two component 
fluxes: 

 NEE(x, y,t) = RESP(x, y,t) −GPP(x, y,t)  (eq 1) 
where x and y represent grid coordinates and t represents time. Sub-hourly variations in 
the simulated component fluxes in time are primarily controlled by the weather 
(especially changes in radiation due to clouds and the diurnal cycle of solar forcing), 
whereas seasonal changes are derived from phenological calculations parameterized from 
satellite imagery. Fine-scale variations in space are driven by variations in vegetation 
cover, soil texture, and soil moisture. To estimate regional fluxes from atmospheric 
mixing ratios, we assume that the model of the component fluxes is biased, and that the 
biases are smoother in time and space than the fluxes themselves: 

 NEE(x, y,t) = (1+ βRESP (x, y))RESP(x, y,t) − (1+ βGPP (x, y))GPP(x, y,t)  (eq 2) 
A persistent bias in photosynthesis might result from underestimation of leaf area, 
available nitrogen, or soil moisture, whereas a persistent bias in respiration might result 
from overestimation of soil carbon or coarse woody debris. In any case, it is reasonable 
that such biases vary much more slowly than the fluxes. We generate surface flux 
influence functions by integrating the backward-in-time particle trajectories from LPDM. 
Using these, we can represent the mixing ratio observed at a given station k at time m as  

 Ck ,m = (1+ βR,i, j )RESPi, j ,n − (1+ βA,i, j )GPPi, j ,n( )Ck ,m,i, j ,n
*( )

i, j ,n
∑ Δt fΔxΔy + CBKGD,k ,m (eq 3) 

where i and j are grid indices in the zonal and meridional directions, n is the time at 
which GPP and Respiration occurred (not usually the time at which the resulting change 
in mixing ratio was measured!). Fossil fuel combustion is specified according to an 
hourly analysis on a 32-km grid being developed in collaboration with K. Gurney and 
tested at CSU. The influence function C*

k,m,i,j,n is then the discrete form of the partial 
derivative of the observed mixing ratio with respect to the NEE at grid cell (i,j) at time 
step n. The length scales Δx and Δy are the sizes of the grid cells in the zonal and 
meridional direction, and Δtf is the time step over which the fluxes are applied. The term 
CBKGD,k,m represents the contribution of “background” CO2 flowing into the model 
domain from the larger scales (estimated from the global PCTM analyses). With a little 
algebra and a healthy dose of computer time, we obtain a simpler representation more 
practical suitable for optimization: 
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 Cobs = (1+ βRESP,cell )CRESP,obs,cell
*

cell=1

nCell

∑ + (1+ βGPP,cell )CGPP,obs,cell
*

cell=1

nCell

∑ + CBKGD,obs  (eq 4) 

where obs is an observation number (combines indices k and m), and cell is a grid cell 
number (combines indices i and j). The influence functions have been convolved with the 
GPP and RESP terms from the forward model and integrated over the time period over 
which the bias terms are assumed to apply: 

 

CRESP,obs,cell
* = Δt fΔxΔy RESPcell ,nCobs,cell ,n

*

n
∑

CGPP,obs,cell
* = −Δt fΔxΔy GPPcell ,nCobs,cell ,n

*

n
∑

 (eq 5) 

Equation 4 is a linear system which can be written simply as  
  

y = hx  (eq 6) 
where  

y is the vector of observations Cobs and  
x  is the vector of unknown bias terms  

β GPP,cell and βResp,cell. The Jacobian matrix h contains the influence functions C*
GPP,obs,cell 

and C*
RESP,obs,cell. The rows of h correspond to each observation, and each column 

corresponds to an unknown bias term βRESP or βGPP at a given grid cell over the 10-day 
integration period. In practice, we treat the background mixing ratio by prescribing lateral 
inflow from the global PCTM. We treat errors in this boundary condition additively by 
augmenting the vector of unknowns  

xwith lateral boundary concentrations and 
“transporting” them to the receptor by augmenting matrix h with additional influence 
functions for these fluxes.  
We minimize a cost function that penalizes model-data mismatch and is regularized by 
imposing a weak prior constraint: 

  J = (
y − hx)T r−1(y − hx) + (x − xp )

T p−1(x − xp )  

where r is the observation error covariance, and p is the prior error covariance of the 
unknown β’s.  
 
6.3 Detailed Results 
 
Please see the attached articles, which report the detailed technical results of the research. 
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[1] This paper investigates the effect of fine-scale spatial variability in carbon fluxes upon
regional carbon flux inversion estimates in North America using simulated data from
1 May through 31 August 2004 and a hypothetical sparse network of eight towers in North
America. A suite of random smooth regional carbon flux patterns are created and then
obscured with random fine-scale spatial flux ‘‘noise’’ to mimic the effect of fine-scale
heterogeneity in carbon fluxes found in nature. Five hundred and forty grid-scale
atmospheric inversions are run using the synthetic data. We find that, regardless of the
particular fine spatial scale carbon fluxes used (noise), the inversions can improve a priori
carbon flux estimates significantly by capturing the large-scale regional flux patterns. We
also find significant improvement in the root-mean-square error of the model are possible
across a wide range of spatial decorrelation length scales. Errors associated with the
inversion decrease as estimates are sought for larger and larger areas. Results show
dramatic differences between postaggregated fine-scale inversion results and
preaggregated coarse-scale inversion results confirming recent warnings about the
‘‘preaggregation’’ of inversion regions.

Citation: Schuh, A. E., A. S. Denning, M. Uliasz, and K. D. Corbin (2009), Seeing the forest through the trees: Recovering
large-scale carbon flux biases in the midst of small-scale variability, J. Geophys. Res., 114, G03007, doi:10.1029/2008JG000842.

1. Introduction

[2] During the last decade, Bayesian-based atmospheric
inversion techniques have emerged as a viable tool to
investigate the spatiotemporal pattern of terrestrial carbon
fluxes [Enting et al. 1994; Fan et al., 1998; Gurney et al.,
2002;Rodenbeck et al., 2003;Baker et al., 2006;Peters et al.,
2007]. Research has largely been focused on continental-
sized regions of the earth, using coupled general circulation
models (GCM). Lately, researchers have begun applying
these techniques to regional flux domains with increasingly
finer resolution inversion domains [Gerbig et al., 2003;
Carouge et al., 2008a, 2008b; Lauvaux et al., 2008].
[3] In general, regional scale inversions focusing on

temporal biases that are of a seasonal length, or longer,
are possible because biosphere models have become adept
at capturing the majority of carbon exchange that occurs on
diurnal and seasonal time scales. The effects of the temper-
ature, available soil water, and sunlight have been modeled
extensively and predictions have become reasonably accu-
rate over a variety of conditions and scales [Baker et al.,
2003, Hanan et al., 2005; Vidale and Stockli, 2005].
However, the necessary components to model longer-term
processes such as nitrogen deposition, land management,
and other biogeochemical dynamics are often missing from
these advanced biophysical models and thus lead to errors

in the model. These effects may be unrecognizable at the
diurnal scale but may dominate over longer temporal scales.
Thus, researchers can begin to estimate these unknown
processes by effectively removing the high-frequency diur-
nal signals at fine scales and estimating the residuals over
longer time and space scales.
[4] The biggest hurdle to these inversions is insufficient

carbon dioxide concentration data to constrain the flux
inversion problem. Therefore, various additional constraints
must be added. Two major methodologies have been
employed to deal with this problem. The first of these two
methods, which was employed in many inversion papers
[Enting et al., 1994; Fan et al., 1998; Gurney et al., 2002;
Peters et al., 2007] involved the preaggregation of large
flux regions, generally according to prior guesses of flux
patterns based upon global spatial net primary production
(NPP) estimates. Largely in response to criticisms of this
method [Kaminski et al., 2001; Engelen et al., 2002],
geostatistical techniques were employed [Michalak et al.,
2004] to constrain the inversion problem. Michalak et al.
[2004] used maximum likelihood techniques to estimate
spatial covariance parameters (of the carbon flux error
component) and then applied the resulting smooth covari-
ance matrices to the differences between the underlying
fluxes and the a priori fluxes. As a consequence of these
additional constraints, inversion resolutions could be used
that were much closer to that of the underlying forward
transport and carbon flux models. Zupanski et al. [2007]
used techniques similar to Michalak et al. [2004], with the
exception that they used a maximum likelihood ensemble
filter (MLEF) to track the covariance structure dynamically
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instead of using more traditional geostatistical point-based
estimates of spatial covariance parameters. Peylin et al.
[2005] explored the effect of two different error correlation
length-scale assumptions when estimating daily fluxes over
a large portion of Europe. Carouge et al. [2008a, 2008b]
used a 10-tower network in Europe in 2001, combined with
synthetic data, to explore the sensitivity of inversion-based
net ecosystem CO2 exchange (NEE) estimates to various
parameters of the inversion including temporal and spatial
correlation.
[5] It seems reasonable to hypothesize that large-scale

spatial patterns may exist in the errors for many models. For
example, assume that one is modeling a large continental
region such as North America. If the underlying flux model
consistently underpredicts gross primary productivity (GPP)
for forested regions and overpredicts for grassland regions
over a given time interval such as a day or a year, then a
map of the errors will likely show small positive errors in
GPP over the grasslands and larger negative errors over the
forested regions. Since grasslands and forested regions tend
to exist in ‘‘clumps’’ on larger scales, this has the effect of
inducing a spatially correlated structure to the errors.
However, large-scale biases need not exist simply as a
function of vegetation type. Persistent long-term droughts
might affect large spatially connected regions of the conti-
nent over several different vegetation types. Fertilization
effects from nitrogen deposition might also impact NEE
over broad regions containing many vegetation types. It is
difficult to exactly predict the structure in any of these
cases, but it is reasonable to believe that correlations might
exist on the order of several hundred kilometers or more. It
is important to realize that this does not imply that the
structure will be simple to recover. For instance, along
ecotones such as the transition from the western to eastern
slope of the Rocky Mountains and into the Great Plains of
the central United States, one might not expect errors in
fluxes to be strongly correlated. It is also reasonable to
assume that the covariance function may not simply be a
function of distance and may involve some kind of struc-
turing around covariates such as biome classification.
[6] Small-scale spatial variability has been a recurrent

theme of eddy flux measurements. For instance, data from
the Chequamegon Ecosystem Atmospheric Study (http://
cheas.psu.edu) showed significant variability in annual NEE
between mature hardwood forests and old growth hardwood
forests [Desai et al., 2005]. Disturbance histories and the
associated age structure has also been shown to be impor-
tant to carbon dynamics in ponderosa pines of the Western
United States [Thornton et al., 2002; Law et al., 2003].
Important factors explored in these papers, such as stand
age and land management, are generally only coarsely
modeled, or not modeled at all in larger-scale inversion
studies. Of course the sampling footprints of the towers that
generate these estimates of variability are generally on the
order of a square kilometer or two and thus aggregated flux
results at, for instance, 1600 km2 (40 km by 40 km) might
be expected to show less variability than that because of the
averaging effect of aggregation. Regional inversions pro-
vide corrections to a priori NEE estimates and these
corrections exhibit features on much larger scales than
40 km [Gerbig et al., 2003; Peylin et al., 2005]. The effect
this has on fluxes is to introduce a layer of ‘‘noise’’ relative

to potentially larger spatial scale error signals, such as
continental scale sinks or large-scale agricultural expansion.
[7] Suppose that the flux model providing the prior

estimates underpredicts GPP, on average, for a large forested
area of North America. It is reasonable that this bias would
vary spatially over this area on fine scales as a function of
local land management practices, natural fire regimes,
climate, and anthropogenic fertilization effects. These types
of effects have different magnitudes and can be persistent at
different temporal scales. Small-scale spatial variability has
not typically been included as part of the prior error
covariance structure [Michalak et al., 2004; Peylin et al.,
2005; Peters et al., 2005, 2007; Zupanski et al., 2007],
where it would be represented by a independent variance
component that is typically termed the ‘‘nugget’’ in geo-
statistical literature [Cressie, 1993]. In general, it is unclear
how the existence and/or exclusion of this error term in the
inversion will affect inversion results.
[8] For instance, assume one is tasked with building and

maintaining several towers to collect CO2 observations
which will be used to provide regional scale NEE estimates
for a reasonably large managed forest region of North
America (the Pacific Northwest United States for instance).
Upon getting into the field, the researcher sees that the land
is a patchwork of old growth, new growth, and recently
clear-cut forest areas, essentially a myriad of fine scale
ecosystems. Where might one locate their tower? If one puts
their tower in a clear-cut location, will it ‘‘bias’’ his
observations? Or what aboutputting it in an old growth
stand surrounded by very vigorous young tree stands? Will
the location have an effect and what will it be? These are
obviously very important questions considering the work
and cost involved in obtaining carbon dioxide measure-
ments. We certainly know that the precise location of an
eddy covariance tower has a huge effect upon the NEE
measurements and any inferences that a researcher might
want to make from them. The question is then: is the precise
location important for a tower providing CO2 observations
to an atmospheric inversion?
[9] In this paper we investigate the effect of fine-scale

spatial variability upon large spatial scale improvements in
estimated NEE and use synthetic data and experiments to
show that regional inversions are robust to fine-scale
spatially independent variance in the flux errors. These
inversions are performed in a manner in which assumptions
need not be made about a fixed ‘‘pattern’’ of fluxes across
large regions. In particular, we vary both the level of small-
scale-independent variance (noise) as well as the decorre-
lation length scale of the spatially correlated portion of the
bias which has a covarying effect upon the success of the
inversion. A hypothetical sparse network of 8 towers in
North America is used and the effects of varying these two
quantities are tested using simulated fluxes and
corresponding simulated measurements from a biosphere-
meteorological model.

2. Methods
2.1. Model

[10] The Simple Biosphere model (SiB) is based on a
land-surface parameterization scheme originally used to
compute biophysical exchanges in climate models [Sellers
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et al., 1986], but later adapted to include ecosystem metab-
olism [Sellers et al., 1996; Denning et al., 1996]. The
parameterization of photosynthetic carbon assimilation is
based on enzyme kinetics originally developed by Farquhar
et al. [1980], and is linked to stomatal conductance and
hence to the surface energy budget and atmosphere [Collatz
et al., 1991, 1992; Sellers et al., 1996; Randall et al., 1996].
The model has been updated to include prognostic calcula-
tion of temperature, moisture, and trace gases in the canopy
air space, and the model has been evaluated against eddy
covariance measurements at a number of sites [Baker et al.,
2003; Hanan et al., 2005; Vidale and Stockli, 2005]. SiB
has been coupled to the Regional Atmospheric Modeling
System (RAMS) and used to study PBL-scale interactions
among carbon fluxes, turbulence, and CO2 mixing ratio
[Denning et al., 2003] and regional scale controls on CO2

variations [Nicholls et al., 2004; Wang et al., 2006]. Other
recent improvements include biogeochemical fractionation
and recycling of stable carbon isotopes [Suits et al., 2005],
improved treatment of soil hydrology and thermodynamics,
and the introduction of a multilayer snow model based on
the Community Land Model [Dai et al., 2003]. This latest
version of SiB is termed SiB3.
[11] In SiB3, the net ecosystem exchange (NEE) is

composed of two component fluxes, gross primary produc-
tivity (GPP) and ecosystem respiration (RESP), which
includes autotrophic and heterotrophic respiration terms
where x and y represent grid coordinates and t represents
time

NEE x; y; tð Þ ¼ RESP x; y; tð Þ $ GPP x; y; tð Þ: ð1Þ

[12] High-frequency time variations of photosynthesis
and respiration are assumed to be well understood and
easily modeled processes, i.e., because of changes in
radiation, temperature, soil moisture, etc. Long-term, more
persistent biases are estimated (equation (2)) by solving for
unknown multiplicative biases in each component flux after
smoothing in space and time. This is accomplished by
convolving the observation-specific ‘‘influence’’ functions
generated from a Lagrangian particle dispersion model,
LPDM [Uliasz and Pielke, 1991; Zupanski et al., 2007;
Lauvaux et al., 2008], with GPP and RESP at each time step
in SiB-RAMS. Figure 1 shows examples of daily mean
influence functions for the WLEF tower for ecosystem
respiration. One can see that the influence function is
weaker for Figure 1 (top), 10 May, mainly because of faster
transport from the northwest as well as weaker carbon
fluxes due to late spring/early summer conditions in the
northern regions of North America.
[13] To summarize, we estimate regional fluxes from

atmospheric mixing ratios by assuming that the model of
the component fluxes is biased, and that the biases are
smoother in time and space than the fluxes themselves:

NEE x; y; tð Þ ¼ 1þ bRESP x; yð Þð ÞRESP x; y; tð Þ
$ 1þ bGPP x; yð Þð ÞGPP x; y; tð Þ: ð2Þ

The model domain, shown in Figure 1, consists of most of
the United States as well as a large portion of Canada and

the northern portions of Mexico. SiB3-RAMS was run on a
single 150 & 90 grid of 40 km cells. RAMS meteorology
was nudged with NCEP ETA 40 km analysis data
throughout the domain using the 4DDA scheme to produce
more reliable wind fields. The fine-scale RAMS output was
then to used to drive the backward in time LPDM model.
SiB3 was run with 8-day fractional photosynthetically
available radiation (FPAR) and leaf area index (LAI) fields
derived from the MODIS MOD15 product. This was
provided from the Numerical Terradynamics Simulation
Group at the University of Montana who generated it for
use in constructing the official MOD17 GPP product [Mu et
al., 2007]. The focus of this study was on the regional
domain and therefore boundary inflow of CO2 was not
optimized or investigated. Given the simulated nature of the
experiments, no actual estimate of inflow was needed. An
inversion of North America using real data could follow a
nested coarse-inversion concept, similar to that presented by
Peylin et al. [2005].

2.2. Synthetic Data

[14] CO2 mixing ratio observations are simulated hourly
at eight measuring sites (WLEF, Harvard Forest, ARM,
BERMS, Fraserdale, Western Peatland, WKWT, and Argyle
(ME), see Figure 2 for locations) over a 113-day period.
These were produced by first running SiB for the period and
domain of interest to serve as our a priori biosphere flux
model. Then we convolved simulated flux bias fields for
GPP and RESP, shown as coefficients to RESP and GPP in
equation (2), with LPDM derived influence functions rep-
resenting contributions to an observation from upwind flux
areas. Gerbig et al. [2003] found mean standard deviations
on the order of 0.6 to 1 ppm when viewing morning and
afternoon vertical profiles of CO2. Afternoon hourly aver-
age observations, at 1200, 1400, 1600, and 1800 LT, are
used to lessen the impact of low-quality modeling of
transport during times of extremely stable and stratified
nocturnal atmospheric conditions near the ground. In total,
there are 3616 synthetic observations covering the period 1
May to 20 August 2004. An independent mean zero 2 ppm
standard deviation Gaussian error term is added to the CO2

observations to provide a crude estimate of transport errors.
[15] In summary, we used a continental scale model run

of SiB, based upon a 113-day period in the summer of 2004,
to provide realistic GPP and respiration fluxes. We also used
a model run of RAMS during the same period to provide
transport fields. We then assume ‘truth’ is actually repre-
sented by these biosphere fluxes multiplied by some syn-
thetic, simulated, bias fields (as shown in Figure 2). We then
simulated what the carbon dioxide concentrations would be
at the observing towers give these biases. Finally, we per-
formed the inversion to see how well we can estimate the
biases from the carbon dioxide concentration observations.

2.3. Inversion Procedure

[16] Standard multivariate normal assumptions are made
and data are assimilated using a Bayesian synthesis inver-
sion, or equivalently, a single standard Kalman filter updat-
ing step. The resolution of the inversion domain (36 & 60,
100 km grid spacing) and the number of measurements
(3616) were selected such that the needed matrix inversions
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could be calculated relatively quickly and without the aid of
additional covariance subsampling procedures such as the
Ensemble Kalman Filter methods [Evensen, 1994; Zupanski
et al., 2007] employ. While sufficient for theoretical exer-
cises, it is noted that additional measurements and increased
inversion domain resolution would require more involved
subsampling procedures such as those used in the ensemble
methods as well as a filter mechanism to propagate infor-
mation forward. In particular, for a length n CO2 measure-
ment vector y, length m CO2 flux bias vector b, n & n

observation error covariance matrix S, n & m Jacobian
transport matrix G, length m prior flux estimate b0, and
mxm model prior mismatch covariance matrix S0, the
Bayesian statistical assumptions are (N(m, S) represents a
multivariate Gaussian/Normal distribution with mean vector
m and covariance matrix S)

yjb;S ' N Gb;Sð Þb ' N b0;S0ð Þ: ð3Þ

Figure 1. (top) An influence function for the modeled upwind respiration contributions to the WLEF
tower for the mean of observations recorded at 1200, 1400, 1600, and 1800 LT on 20 May 2004. For
example, if a cell value is 0.29 ppm then it contributed 0.29 ppm to the mean afternoon observation
(estimated by the four hourly observations above) at the WLEF tower for that day. (bottom) A similarly
derived respiration influence function for 28 June 2004.

G03007 SCHUH ET AL.: SEEING THE FOREST THROUGH THE TREES

4 of 11

G03007



The posterior distribution of the flux vector can be solved
for analytically and is

p bjy;Sð Þ / $1

2
Gb $ yð ÞTS$1 Gb $ yð Þ þ b $ b0ð ÞTS$1

0 b $ b0ð Þ
h i

' N S$1
0 þ GTS$1G

! "$1 S$1
0 b0 þ GTS$1y

! "

; S$1
0 þ GTS$1G

! "! "$1
# $

: ð4Þ

With a little bit of algebra, one can rewrite the mean/
expectation of the posterior distribution of the mean, giving
the familiar Kalman filter updating equation

E bposterior

% &

¼ b0 þ GTS$1Gþ S$1
0

! "

GTS$1 y$ Gb0ð Þ: ð5Þ

With respect to constraining the problem with spatially
correlated errors, the covariance matrix S0 is portioned into
RESP and GPP components, SRESP,prior and SGPP,prior, and
will take on the following form:

X

0
¼

P

RESP;prior 0
0

P

GPP;prior

' (

: ð6Þ

For the case of correlated errors in the prior flux, the
respiration and GPP covariance matrices are each formed

from the exponential covariance function, where ti,j is the
distance between points xi and xj

Cov bi;bj

! "

¼ s2
0 1$ a0ð Þ exp $ti;j

h0

# $

; i 6¼ j

a0s2
0; i ¼ j:

(

ð7Þ

The h0 parameter is the range, or decorrelation length-scale
parameter, giving the distance at which the covariance
between two points is equal to s02 (1 $ a0)e

$1. The s2

parameter is the scalar variance parameter and determines
the variance of the marginal distribution of the particular
flux component. The parameter a0 controls what percentage
of the covariance can be attributed to spatial covariance, as
opposed to spatially independent errors.
[17] Given a posterior mean NEE xposterior of length n, a

posterior mean NEE variance estimate Sposterior of dimen-
sion n & n, and a scalar vector b of length n that maps
higher-resolution fluxes to coarser resolution fluxes, the
following result from multivariate Gaussian statistics

Figure 2. Example correction of (a–d) GPP and (e–h) total respiration signal. (a and e) Small spatial
scale bias applied over model domain, (b and f) large-scale bias over model domain which we would like
to recover, (c and g) total signal (sum of small and large), and (d and h) posterior estimate of mean bias.
The eight CO2 observing towers are shown as black dots on the images. Since biases are plotted as
deviations from the prior (as in equation (2)), the mean a priori fluxes can be visualized as solid white
plots with all grid cells equal to zero.

G03007 SCHUH ET AL.: SEEING THE FOREST THROUGH THE TREES

5 of 11

G03007



[Johnson and Wichern, 1988] can be employed to compare
mean NEE at larger postaggregated scales

NEEb ¼ b0xposterior ' N b0xposterior; b
0
X

posterior
b

# $

: ð8Þ

The scalar vector b can be chosen as a sequence of 1/k’s and
0s where one is estimating the mean of a block of k cells
together. In essence, this is mapping the higher-resolution
posterior mean fluxes to coarser resolution mean fluxes.
Given that we are considering NEE as the sum of GPP and
RESP, the above result can first be employed to sum GPP
and RESP correctly and then employed again to aggregate
up resulting NEE. In this example, our finest resolution was
100 km, a grid of 60 by 36. Values of k were chosen to be 4,
9, 16, 36,144, and 2160, which represent aggregations to
400 km, 900 km, 1600 km, 3600 km, 14,400 km, and the
entire domain. In order to compare to the prior, this

calculation was performed on both the distribution of the
mean of the posterior fluxes as well as the assumed
distribution of the mean of the prior fluxes.

2.4. Experiments

[18] In order to test the sensitivity of the inversion to fine-
scale spatial noise, we introduce a set of Monte Carlo
inversion experiments. Recall that the principle motivation
of this paper is to investigate the recovery, or estimation, of
large-scale flux patterns through a ‘‘veil’’ of small-scale
spatial noise. Given the difficulty in estimating decorrela-
tion length scale from the data and the uncertainty surround-
ing the effect of one’s choice of prior decorrelation scale
length for the flux errors, we choose to include it in the
sensitivity tests. In traditional Bayesian statistics, one is
working with ‘fixed’ observations and so one typically
perturbs a priori distributions to test the sensitivity of the
estimation procedures to them. We take a different approach

Table 1. Summary Statisticsa

Flux-Based Statistics 200 km 400 km 600 km 1200 km Domain

Prior mean RMSE (g/m2) 45.3 38.4 35.3 26.8 2.6
Posterior mean RMSE (g/m2) 28.2 20.5 16.4 8.0 1.7
Improvement over priorb (%) 39.2 49.1 56 72.3 57.1
Improvement in mean SD for grid cell mean over priorc (%) 32.5 40 45.8 59.1 77.9

aFor example, inversion shown in Figure 1. This result is based upon a simulated observation error and thus changes slightly with different realizations.
bPresented in Figure 4 for multiple inversion study.
cCrude measure of tightening of posterior.

Figure 3. A summary of the algorithm used to generate postaggregated experiments in section 3.
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in this paper because of the fact that our observations/data
are changing with different simulations. We choose reason-
ably broad a priori specifications that should apply across
many different models and then test how well the estimation
procedure can reproduce a variety of simulated ‘true’ flux
situations, each with a corresponding set of simulated CO2

observations from the eight towers. Recall from section 2
that the forward model of both fluxes (SiB3) and transport
(RAMS) operate on a 40 km grid and is then postaggregated
to a 100 km grid for computational reasons.
[19] A key component of atmospheric CO2 inversions is

the specification of a priori error bounds for the different
fluxes. An intercomparison of atmospheric CO2 inversion
models (Transcom3 [Gurney et al., 2002]) provided source/
sink estimates on the order of a few tenths of a Pg of carbon
per inversion region per year. When compared to the actual
net photosynthesis or ground respiration fluxes for this
region, this results in uncertainties on the order of 10–30%
in either direction, on a cumulative basis. We chose to
represent ensembles of potential ‘true’ flux scenarios with
mean zero, spatially correlated, 20% marginal standard

deviation, Gaussian-based biases for individual 100 km grid
cell GPP and respiration. These biases also seem to be a
reasonably conservative a priori specification for the scalar
multiplier on the spatial portion of the prior Gaussian
covariance. In other words, we do not expect GPP and
RESP biases to be outside of ±40% of the a priori estimates.
Simulated flux bias realizations (examples shown in
Figures 2b and 2f) are drawn from this range and we
assume this is known to set the a priori covariance matrix.
Small-scale spatial noise of the same order also seems
reasonable, and in combination with the spatial component
generates a suitably wide range of potential biases, on the
order of 40% standard deviation for the individual 100 km
grid cells for which they are applied.
[20] Decorrelation length scales are investigated at levels

of 100 km, 500 km, 1000 km, and 2000 km. Small-scale
Gaussian flux noise will be allowed to vary between
standard deviation levels of 1%, 5%, 10%, 20%, and 40%
of the a priori fluxes. The a priori scalar standard deviation
on the spatial covariance term is set to 20% and the prior
inversion decorrelation length scale will be set to 500 km, a

Figure 4. The improvement of posterior with respect to prior for preaggregated (dark gray) and
postaggregated (light gray) inversion grid, factored over noise level and decorrelation length scale of true
pattern used. Preaggregated (dark gray) inversions are only performed for grid sizes between 200 and
1200 km. An individual box plot shows the median (square for postagg and circle for preagg), the
interquartile range (25th to 75th quantile) as the solid gray (light or dark) box, and whiskers indicating the
most extreme data point which is no more than 1.5 times the interquartile range from the box (an ad hoc
indicator of outliers).
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reasonably conservative prior compromise between similar
parameters used in some recent papers [Michalak et al.,
2004; Peylin et al., 2005]. For each combination of these
two levels, 18 realizations of each scenario were run using
randomly generated pseudo data corresponding to the levels
used. Each realization introduces random ‘‘observation’’
error (mostly transport error) and random flux bias spatial
patterns, both large and small scale. Since the temporally
varying sampling pattern of the 8 towers is stationary, we
must ensure that many different potential flux patterns are
realized by the experiments so that the results are not
dependent upon the sampling footprint of the towers.
[21] A specific example is presented to show the meth-

odology of one realization. Figure 2 shows the spatial noise

pattern, the longer-scale spatially correlated signal, as well
as the summed bias and the inversion estimate for both GPP
and respiration fluxes. This particular example employed a
noise level of 20%, equivalent to the scalar variability of the
spatially correlated signal. The spatial decorrelation length
scale used to create the correlated flux errors was 500 km,
equal to that used as the a priori estimate. Table 1 shows
summary statistics for the mean flux estimates of upscaled,
increasingly coarse, gridded flux regions for this example.
These statistics will be used as the measure of fit for
inversions based upon the complete set of levels mentioned
above. In section 3 we present inversion results across a
variety of ‘noise’ levels and decorrelation length scales. A

Figure 5. A comparison of errors from preaggregation versus postaggregation. Underlying spatial
pattern comes from Figure 2. Preaggregation is a result of summing carbon fluxes on 1200 by 1200 km
grid and running inversion on that grid. Postaggregation is a result of summing carbon fluxes on a 100 by
100 km grid and running the inversion on that grid and then summing up fluxes to a 1200 by 1200 km
grid. Distinctly better results for postaggregation of fine-scale (100 km grid) inversion shown.
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summary of this procedure, for postaggregated experiments,
is shown in Figure 3.

3. Results and Discussion

[22] Results from the sample realization, shown in Figure 2,
indicate that the posterior improves fluxes considerably over
the a priori estimates. Improvement in the spatial average
RMSE over the prior fluxes is from 40% to 90% depending
upon the postaggregation level. For example, Table 1 shows
that when the inversion is run on a 100 km by 100 km grid
and the results are postaggregated to 1200 km by 1200 km
grid, the average root mean squared error (RMSE) over all
of the 1200 km by 1200 km grid cells is reduced from
26.8 g/m2 to 8.0 g/m2. This is promising, considering that
the level of small-scale noise (20% at 100 km) is equivalent
to that of the spatially correlated portion of the flux errors
(20%) for this example.
[23] Figure 4 shows these results over the entire range of

small-scale variability and decorrelation length-scale param-
eters given in the algorithm above. The aggregated results,
based upon 100 km resolution inversions, are shown in light
gray. Variability within each panel of the image is due to the
fact that the underlying bias field is not known and therefore
has to be sampled over the set of all possible bias fields. The
improvement in the spatial average RMSE over the prior is
generally in the range of 20% to 90% over all combinations.
The results show that the inversion is robust to small-scale
spatial noise over a wide range of noise levels and decorre-
lation length scales. Although it may seem at first glance
that these results contradict findings of others, such as
Peylin et al. [2005] who found that changing a priori
covariance assumptions impacts the strength and location
of corrections, spatially, it must be understood that these
results are presented as large-scale spatial averages. The
degree and location of correction is likely to change with
varying a priori spatial assumptions on the errors but as one

postaggregates results to larger scales, corrections are more
robust. This is likely a result of varying a priori spatial
assumptions driving correlated posterior flux estimates.
[24] The power of higher-resolution inversions versus

lower-resolution ‘‘preaggregated’’ inversions is shown in
Figure 4 as well. Inversions performed on the grid cell size
shown in the x axis are shown in dark gray. For instance, at
the point in an individual panel at which the x axis indicates
600 km, the light gray results give aggregated results based
upon 100 km inversions while the dark gray results give
results based upon 600 km inversions. The difference is
clearly most sensitive to the spatial correlation length scale
of the bias pattern while much less sensitive to the layer of
noise added to the flux biases. This is as one would expect:
very smooth bias fields require less precise spatial estimates
of the biases while less smooth bias fields require more
precise spatial estimates.
[25] Preaggregated and postaggregated inversion results

both provide significant NEE corrections but postaggre-
gated results provide larger improvements in estimation than
preaggregated results. This is investigated by plotting an
example based upon the spatial patterns shown in Figure 2.
First, an inversion is run at a 100 km resolution and the
results are statistically combined to 1200 km resolution.
Then the various carbon fluxes are summed up across a
100 km grid to a 1200 km grid and the inversion is run at the
1200 km grid resolution. The results are shown in Figure 5.
It is clear that postaggregation is preferable [Kaminski et al.,
2001; Engelen et al., 2002]. If one reviews the differences in
the estimates, it becomes clear that they often do not appear
in the grid cell that contains the CO2 observing tower, or
necessarily in completely unconstrained grid cells. The
largest errors appear to coincide with locations where steep
sampling gradients (i.e., the upwind sampling crossing
primarily a corner of the grid cell) intersect with fairly
significant and heterogeneous fluxes at the 100 km scale,
the scale of the fine-scale inversion. This manifests itself as

Figure 6. Prior and posterior cumulative NEE over period of 11 May to 31 August 2004, for example,
shown in Figure 2 and Table 1.
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a type of ‘‘halo’’ effect around the combined sampling
footprint of the towers.
[26] Figure 6 shows the ‘‘contraction’’ of the cumulative

NEE integrated over the entire domain from the a priori
cumulative flux to the posterior cumulative flux, centered
around the assumed true cumulative NEE. The a priori NEE
is the same for all the inversions while the posterior NEE
distribution is based upon the example inversion given
previously in Figure 2. The posterior cumulative flux
estimates are much closer to the truth, displaying signifi-
cantly less variability. Furthermore, the a priori spatially
integrated cumulative fluxes appear to show a reasonable
range of possible deviations, ±3PgC per year, from the a
priori assumed mean zero annual NEE balance of SiB3,
representing the potential to encompass many realistic
source/sink scenarios.

4. Conclusions

[27] The results of this paper show that NEE predictions
can be significantly improved when large-scale spatial bias
patterns exist in the GPP and RESP estimates. Predictions
are improved across a range of possible spatial decorrelation
length scales. Furthermore, and most importantly, these
relatively large-scale postaggregated fluxes are robust to
significant small-scale spatial noise that may exist in the
flux biases at resolutions that are commonly used for
regional inversion studies.
[28] One might have predicted that the inversion would

be influenced heavily by small-scale variability in a few
grid cells surrounding the towers where the CO2 observa-
tions were made. However, even when only 33% of the
overall variability is on the larger scales, improvements of
greater than 40% (RMSE) can be made. Furthermore, the
estimates get more accurate as the region of interest gets
larger. In general, this is not true of eddy-covariance-based
flux tower measurements which often capture the effect of a
small flux footprint (a few km). These measurements may
not be very representative of surrounding fluxes, even those
in close proximity to the tower and shows the value of
collecting and analyzing CO2 mixing ratio measurements.
[29] The results also show the continued importance of

running inversions at the finest scale available and this
confirms the analysis made by [Kaminski et al., 2001].
Preaggregated and postaggregated inversion styles both
show robustness to small-scale spatial variability in the flux
biases. However, it is clear that preaggregation severely
diminishes the quality of the corrections to NEE. In partic-
ular, there should be a focus on improving the accuracy of
inversions in areas with steep sampling gradients and
heterogeneous fluxes.
[30] There are several components of a standard regional

inversion which are not addressed in this paper because of
the nature of the hypothesis and result. For example, the
choice of temporal averaging time for observations is not
necessarily needed for this paper but needs investigation in
an applied regional inversion. Boundary inflow of CO2 also
plays a critical role in regional inversions but is not needed
for this paper. These will be investigated and included in an
upcoming paper which focuses upon GPP/RESP/NEE pre-
diction in 2004 for North America.

[31] Acknowledgments. This research was funded by NOAA con-
tract NA17RJ1228 and by Department of Energy grant DE-FG02-
02ER63474. We wish to thank the North American Carbon Program and
the Office of Science as well as the Numerical Terradynamics Simulation
Group (NTSG) at University of Montana for providing the FPAR/LAI data
that was used in this paper. I would like to thank the other authors as well as
my Ph.D. committee members whose comments strengthened the paper,
i.e., Scott Denning, Niall Hanan, Stephen Ogle, and Jennifer Hoeting, all of
Colorado State University. Although not directly used in this paper, we
thank the following tower PIs whose work and data provided motivation for
this paper, WLEF (Arlyn Andrews, NOAA GMD), ARM at Great Plains
(Sebastien Biraud), LBNL at Harvard Forest (William Munger, Harvard
University, Argyle), ME (Arlyn Andrews, NOAA GMD), WKWT at
Moody, Texas (Arlyn Andrews, NOAA GMD), Fraserdale (Douglas
Worthy, MSC), Western Peatland (Larry Flanagan, University of
Lethbridge), and BERMS at Candle Lake (Douglas Worthy, MSC).
Additionally, I would like to thank the reviewers for many helpful com-
ments and useful suggestions for improving this manuscript.

References
Baker, D. F., S. C. Doney, and D. S. Schimel (2006), Variational data
assimilation for atmospheric CO2, Tellus B, 58, 359–365.

Baker, I., A. S. Denning, N. Hanan, L. Prihodko, M. Uliasz, P. Vidale,
K. Davis, and P. Bakwin (2003), Simulated and observed fluxes of sensible
and latent heat and CO2 at the WLEF-TW tower using Sib 2.5, Global
Change Biol., 9, 1262–1277, doi:10.1046/j.1365-2486.2003.00671.x.

Carouge, C., P. Bousquet, P. Peylin, P. J. Rayner, and P. Ciais (2008a), What
can we learn from European continuous atmospheric CO2 measurements
to quantify regional fluxes—Part 1: Potential of the network, Atmos.
Chem. Phys. Discuss., 8, 18,591–18,620.

Carouge, C., P. Peylin, P. J. Rayner, P. Bousquet, F. Chevallier, and
P. Ciais (2008b), What can we learn from European continuous atmo-
spheric CO2 measurements to quantify regional fluxes—Part 2: Sensitiv-
ity of flux accuracy to inverse setup, Atmos. Chem. Phys. Discuss., 8,
18,621–18,649.

Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry (1991), Physiological
and environmental regulation of stomatal conductance, photosynthesis,
and transpiration: A model that includes a laminar boundary layer, Agric.
For. Meteorol., 54, 107–136, doi:10.1016/0168-1923(91)90002-8.

Collatz, G. J., M. Ribas-Carbo, and J. A. Berry (1992), Coupled photosyth-
esis-stomatal conductance model for leaves of C4 plants, Aust. J. Plant
Physiol., 19, 519–538.

Cressie, N. (1993), Statistics for Spatial Data, Wiley, New York.
Dai, Y., et al. (2003), The common land model (CLM), Bull. Am. Meteorol.
Soc., 84, 1013–1023, doi:10.1175/BAMS-84-8-1013.

Denning, A. S., J. G. Collatz, C. Zhang, D. A. Randall, J. A. Berry,
P. J. Sellers, G. D. Colello, and D. A. Dazlich (1996), Simulations of
terrestrial carbon metabolism and atmospheric CO2 in a general circula-
tion model. Part 1: Surface carbon fluxes, Tellus B, 48, 521–542.

Denning, A. S., M. Nicholls, L. Prihodko, I. Baker, P. Vidale, K. Davis, and
P. Bakwin (2003), Simulated variations in atmospheric CO2 over a Wis-
consin forest using a couple ecosystem-atmosphere model, Global
Change Biol., 9, 1241–1250, doi:10.1046/j.1365-2486.2003.00613.x.

Desai, A. R., P. V. Bolstad, B. D. Cook, K. J. Davis, and E. V. Carey
(2005), Comparing net ecosystem exchange of carbon dioxide between
an old-growth and mature forest in the upper Midwest, USA, Agric.
For. Meteorol., 128, 33–55, doi:10.1016/j.agrformet.2004.09.005.

Engelen, R. J., A. S. Denning, and K. R. Gurney (2002), On error estima-
tion in atmospheric CO2 inversions, J. Geophys. Res., 107(D22), 4635,
doi:10.1029/2002JD002195.

Enting, I., C. Trudinger, and R. Francey (1994), A synthesis inversion of
the concentration and d13C of atmospheric CO2, Tellus B, 47, 35–52.

Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error statistics,
J. Geophys. Res., 99, 143–162.

Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, and
P. Tans (1998), A large terrestrial carbon sink in North America implied
by atmospheric and oceanic carbon dioxide data and models, Science,
282, 442–446.

Farquhar, G. D., S. V. Caemmerer, and J. A. Berry (1980), A biochemical
model of photosynthetic CO2 fixation in the leaves of C3 species, Planta,
149, 78–90, doi:10.1007/BF00386231.

Gerbig, C., J. C. Lin, S. C. Wofsy, A. E. Andrews, B. C. Daube, K. J.
Davis, and C. A. Grainger (2003), Toward constraining regional-scale
fluxes of CO2 with atmospheric observations over a continent: 2. Ana-
lysis of COBRA data using a receptor-oriented framework, J. Geophys.
Res., 108(D24), 4757, doi:10.1029/2003JD003770.

Gurney, K. R., et al. (2002), Towards robust regional estimates of CO2

sources and sinks using atmospheric transport models, Nature, 415,
626–630, doi:10.1038/415626a.

G03007 SCHUH ET AL.: SEEING THE FOREST THROUGH THE TREES

10 of 11

G03007



Hanan, N. P., J. A. Berry, S. B. Verma, E. A. Walter-Shea, A. E. Suyker,
G. G. Burba, and A. S. Denning (2005), Testing a model of CO2, water
and energy exhcnage in Great Plains tallgrass prairie and wheat ecosys-
tems, Agric. For. Meteorol., 131, 162–179.

Johnson, R. A., and D. W. Wichern (1988), Applied Multivariate Statistical
Analysis, Prentice Hall, Englewood Cliffs, N. J.

Kaminski, T., P. J. Rayner, M. Heimann, and I. G. Enting (2001), On
aggregation errors in atmospheric transport inversions, J. Geophys.
Res., 106, 4703–4715, doi:10.1029/2000JD900581.

Lauvaux, T., M. Uliasz, C. Sarrat, F. Chevallier, P. Bousquet, C. Lac, K. J.
Davis, P. Ciais, A. S. Denning, and P. J. Rayner (2008), Mesoscale
inversion: First results from the CERES campaign with synthetic data,
Atmos. Chem. Phys., 8, 3459–3471.

Law, B. E., O. J. Sun, J. Campbell, S. V. Tuyl, and P. E. Thornton (2003),
Changes in carbon storage and fluxes in a chronosequence of ponderosa
pine, Global Change Biol., 9, 510 – 524, doi:10.1046/j.1365-2486.
2003.00624.x.

Michalak, A. M., L. Bruhwiler, and P. P. Tans (2004), A geostatistical
approach to surface flux estimation of atmospheric trace gases, J. Geo-
phys. Res., 109, D14109, doi:10.1029/2003JD004422.

Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running (2007), Development
of a global evapotranspiration algorithm based on MODIS and global
meteorology data, Remote Sens. Environ., 111, 519–536, doi:10.1016/
j.rse.2007.04.015.

Nicholls, M. E., A. S. Denning, L. Prihodko, P. Vidale, K. Davis, and
P. Bakwin (2004), A multiple-scale simulation of variations in atmo-
spheric carbon dioxide using a coupled biosphere-atmospheric model,
J. Geophys. Res., 109, D18117, doi:10.1029/2003JD004482.

Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol,
D. Zupanski, L. Bruhwiler, and P. P. Tans (2005), An ensemble data
assimilation system to estimate CO2 surface fluxes from atmospheric
trace gas observations, J. Geophys. Res., 110, D24304, doi:10.1029/
2005JD006157.

Peters, W., et al. (2007), An atmospheric perspective on North American
carbon dioxide exchange: Carbon Tracker, Proc. Natl. Acad. Sci. U. S. A.,
104, 18,925–18,930, doi:10.1073/pnas.0708986104.

Peylin, P., et al. (2005), Daily CO2 flux estimates over Europe from con-
tinuous atmospheric measurements: Part 1, Inverse methodology, Atmos.
Chem. Phys., 5, 3173–3186.

Randall, D. A., et al. (1996), A revised land-surface parameterization
(SiB2) for atmospheric GCMs. Part 3: The greening of the CSU General
Circulation Model, J. Clim., 9, 738–763, doi:10.1175/1520-0442(1996)
009<0738:ARLSPF>2.0.CO;2.

Rodenbeck, C., S. Houweling, M. Gloor, and M. Heimann (2003), CO2 flux
history 1982–2001 inferred from atmospheric data using a global inver-
sion of atmospheric transport, Atmos. Chem. Phys., 3, 1919–1964.

Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher (1986), A simple
biosphere model (SiB) for use within general circulation models,
J. Atmos. Sci., 43, 505–531, doi:10.1175/1520-0469(1986)043<0505:
ASBMFU>2.0.CO;2.

Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field,
D. A. Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua (1996), A
revised land surface parameterization (SiB2) for atmospheric GCMs.
Part I: Model formulation, J. Clim., 9, 676–705, doi:10.1175/1520-
0442(1996)009<0676:ARLSPF>2.0.CO;2.

Suits, N. S., A. S. Denning, J. A. Berry, C. J. Still, J. Kaduk, J. B.
Miller, and I. T. Baker (2005), Simulation of carbon isotope discrimi-
nation of the terrestrial biosphere, Global Biogeochem. Cycles, 19,
GB1017, doi:10.1029/2003GB002141.

Thornton, P. E., et al. (2002), Modeling and measuring the effects of dis-
turbance history and climate on carbon and water budgets in evergreen
needleleaf forests, Agric. For. Meteorol., 113, 185–222, doi:10.1016/
S0168-1923(02)00108-9.

Uliasz, M., and R. A. Pielke (1991), Application of the receptor oriented
approach in mesoscale dispersion modeling, in Air Pollution Modeling
and its Applications VIII, edited by H. Van Dop and D. G. Steyn,
pp. 399–408, Plenum, New York.

Vidale, P. L., and R. Stockli (2005), Prognostic canopy air space solutions
for land surface exchanges, Theor. Appl. Climatol., 80, 245 – 257,
doi:10.1007/s00704-004-0103-2.

Wang, J. W., A. S. Denning, L. Lu, I. T. Baker, and K. D. Corbin (2006),
Observations and simulations of synoptic, regional, and local variations
in atmospheric CO2, J. Geophys. Res., 112, D04108, doi:10.1029/
2006JD007410.

Zupanski, D., A. S. Denning, M. Uliasz, M. Zupanski, A. E. Schuh,
P. J. Rayner, W. Peters, and K. D. Corbin (2007), Carbon flux bias
estimation employing Maximum Likelihood Ensemble Filter (MLEF),
J. Geophys. Res., 112, D17107, doi:10.1029/2006JD008371.

$$$$$$$$$$$$$$$$$$$$$$$
K. D. Corbin, A. S. Denning, A. E. Schuh, and M. Uliasz, Graduate

Degree Program in Ecology, Department of Atmospheric Science, Colorado
State University, 1371 Campus Delivery, Fort Collins, CO 80523-1371,
USA. (aschuh@atmos.colostate.edu)

G03007 SCHUH ET AL.: SEEING THE FOREST THROUGH THE TREES

11 of 11

G03007



Biogeosciences, 7, 1625–1644, 2010
www.biogeosciences.net/7/1625/2010/
doi:10.5194/bg-7-1625-2010
© Author(s) 2010. CC Attribution 3.0 License.

Biogeosciences

A regional high-resolution carbon flux inversion of North America
for 2004

A. E. Schuh1, A. S. Denning1, K. D. Corbin 1,*, I. T. Baker1, M. Uliasz1, N. Parazoo1, A. E. Andrews2, and
D. E. J. Worthy3

1Colorado State University, Fort Collins, Colorado, USA
2National Oceanic and Atmospheric Administration Earth System Research Laboratory, 325 Broadway R/GMD1,
Boulder, CO 80305, USA
3Environment Canada, 4905 Dufferin Street, Toronto, Ontario, Canada
* now at: CSIRO Marine and Atmospheric Research Aspendale, VIC, Aspendale, Australia

Received: 9 July 2009 – Published in Biogeosciences Discuss.: 2 November 2009
Revised: 21 April 2010 – Accepted: 23 April 2010 – Published: 20 May 2010

Abstract. Resolving the discrepancies between NEE esti-
mates based upon (1) ground studies and (2) atmospheric
inversion results, demands increasingly sophisticated tech-
niques. In this paper we present a high-resolution inversion
based upon a regional meteorology model (RAMS) and an
underlying biosphere (SiB3) model, both running on an iden-
tical 40 km grid over most of North America. Current op-
erational systems like CarbonTracker as well as many pre-
vious global inversions including the Transcom suite of in-
versions have utilized inversion regions formed by collaps-
ing biome-similar grid cells into larger aggregated regions.
An extreme example of this might be where corrections to
NEE imposed on forested regions on the east coast of the
United States might be the same as that imposed on forests
on the west coast of the United States while, in reality, there
likely exist subtle differences in the two areas, both natural
and anthropogenic. Our current inversion framework utilizes
a combination of previously employed inversion techniques
while allowing carbon flux corrections to be biome indepen-
dent. Temporally and spatially high-resolution results utiliz-
ing biome-independent corrections provide insight into car-
bon dynamics in North America. In particular, we analyze
hourly CO2 mixing ratio data from a sparse network of eight
towers in North America for 2004. A prior estimate of carbon
fluxes due to Gross Primary Productivity (GPP) and Ecosys-
tem Respiration (ER) is constructed from the SiB3 biosphere
model on a 40 km grid. A combination of transport from

Correspondence to:A. E. Schuh
(aschuh@atmos.colostate.edu)

the RAMS and the Parameterized Chemical Transport Model
(PCTM) models is used to forge a connection between up-
wind biosphere fluxes and downwind observed CO2 mixing
ratio data. A Kalman filter procedure is used to estimate
weekly corrections to biosphere fluxes based upon observed
CO2. RMSE-weighted annual NEE estimates, over an en-
semble of potential inversion parameter sets, show a mean
estimate 0.57 Pg/yr sink in North America. We perform the
inversion with two independently derived boundary inflow
conditions and calculate jackknife-based statistics to test the
robustness of the model results. We then compare final re-
sults to estimates obtained from the CarbonTracker inversion
system and at the Southern Great Plains flux site. Results are
promising, showing the ability to correct carbon fluxes from
the biosphere models over annual and seasonal time scales,
as well as over the different GPP and ER components. Addi-
tionally, the correlation of an estimated sink of carbon in the
South Central United States with regional anomalously high
precipitation in an area of managed agricultural and forest
lands provides interesting hypotheses for future work.

1 Introduction

Carbon dioxide inversion studies have generally been fo-
cused on improved estimation of terrestrial carbon fluxes
such as Ecosystem Respiration (ER), Gross Primary Pro-
duction (GPP), and Net Ecosystem Exchange (NEE) as a
means to better understand the carbon cycle of the earth. Re-
searchers have progressively increased the resolution, in both
time and space, and accuracy of the carbon flux estimates
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over the past decade. Early inversion studies were focused
primarily with finding an explanation for the missing sink of
carbon that can be easily identified from calculating a bud-
get from annual fossil fuel emissions to the atmosphere, the
effect of land use changes, and the oceanic carbon sink and
comparing it to annual records of increasing atmospheric car-
bon dioxide concentrations. Given that the sink often repre-
sents a third of the annual fossil fuel emissions, it is of great
interest to scientists and policy makers alike. Inversion re-
sults have been very effective at identifying large defining
features of the terrestrial portion of the carbon sink (Fan et
al., 1998; Gurney et al., 2002) although much debate remains
even at extremely large scales (Stephens et al., 2007). How-
ever, the debate on a global scale has not deterred researchers
from focusing these techniques on finer scale problems. In
fact, criticism has been aimed at large scale global inversions
because of the fact that their estimates can be biased on finer
regional scales (Kaminski et al., 2001). The data available
for regional inversion studies is increasing rapidly year af-
ter year, primarily within the developed industrial nations of
the Northern Hemisphere. This provides researchers with
some of the first opportunities to perform inversion studies
in a very high-resolution setting.

Gerbig et al. (2003) provided the first major regional in-
version paper. They used a receptor-oriented inversion ap-
proach to investigate a series of flights from the CO2 Bud-
get and Rectification Airborne (COBRA) study conducted in
2000. Results showed that the effect of biosphere carbon
fluxes could be seen at altitude in mixed layer CO2 observed
by aircraft. The paper pointed out several areas for future im-
provements in regional inverse modeling including improv-
ing biosphere-atmosphere exchange and convective transport
modeling. Peylin et al. (2005) followed this with a regional
inversion based on western Europe in which he estimated
daily fluxes for a month using relatively continuous mea-
surements of CO2 from towers in the inversion domain. The
most similar effort made for North America comes from the
ongoing CarbonTracker project (Peters et al., 2007). Peters
et al. (2007) used a nested transport structure (TM5) with
a relatively high-resolution 1-degree inner grid over North
America. A priori carbon fluxes were estimated by modify-
ing 1-degree by 1-degree monthly output from the Carnegie
Ames Stanford Approach (CASA) model to provide diurnal
variability by incorporating aQ10 temperature relationship
for respiration and a linear scaling of GPP with solar radi-
ance. NEE estimates were optimized by estimating linear
correction factors for NEE for each of up to 19 ecoregion-
based (Olsen et al., 1992) sub-areas of North America based
upon a 5-week smoothing window. The coarseness of the in-
version over North America is required in order to regularize
the inversion problem in light of limited observations.

Our inversion framework has drawn upon certain tech-
niques from previous inversions while including some new
features. The aim of the inversion is to provide fine scale in-
version results over North America for 2004. A novel feature

of this inversion is the distinct estimation of GPP and ER
instead of just NEE, which to our knowledge has not previ-
ously been performed, at least in the regional framework. We
have drawn upon the spatial correlation constraints used by
Rödenbeck et al. (2003) and Michalak et al. (2004), largely in
order to regularize the inversion problem. We are largely us-
ing the spatial correlation in the prior error covariance struc-
ture to regularize the problem. Attempts were made to es-
timate the spatial correlation via the measurements but the
data was not constraining enough. Future alternatives that
might be possible would be to estimate parameters via a
prior flux model as in Mueller et al. (2008) or Gourdji et
al. (2008). However, it has been shown in practice that cer-
tain isotropic spatial error correlations can work well as a
regularization agent. Carouge et al. (2008a, b) investigated
the potential of a 10 tower network of CO2 observing towers
over Europe using a 50 km resolution grid over Europe. They
found that 10 days temporal and 1000 km spatial averaging
was required in order to obtain good agreement between es-
timate and “true” fluxes. Surprisingly, they found that these
isotropic assumptions on the spatial errors performed better
than an estimate of the spatial errors based on the “physical
errors”, those that could be calculated by knowing the “true”
fluxes.

Large matrix inversions limited the inversion grid resolu-
tion to approximately 10 000 km2 (60×36 grid composed of
100 km by 100 km grid cells). For sensitivity studies involv-
ing numerous inversion runs, a 40 000 km2 grid (30×18 grid
composed of 200 km by 200 km grid cells) is used. Many
previous global inversions have been performed upon grid
areas of around 5 to 10 times that size. In order to provide
some contrast, CarbonTracker optimizes 17 bias correction
factors for NEE over North America (with 4 of those rep-
resenting less than 0.5% of the land area each) while this
inversion typically optimizes 30×18=540 each (30×18 grid
mentioned above) for ER and GPP. It is important to note that
the employment of a spatial correlation constraint and decor-
relation length scale, either due to a formal statistical model,
or as a method of regularization, does reduce the effective
degrees of freedom so that we certainly do not expect the op-
timization of 540 “independent” parameters. Nevertheless,
it is important to note that Schuh et al. (2009) showed how
biases can occur when using a relatively coarse fixed set of
regions within an atmospheric inversion as opposed to a finer
set of regions, even when assuming spatial-scale patterns of
carbon flux on the order of 500 km and greater. The flexi-
bility we have achieved by avoiding fixed inversion regions
does not come without a cost since we cannot simultane-
ously optimize fluxes outside of North America. Therefore
we used offline-derived boundary conditions and provided
these as fixed contributions to the tower CO2 budget.

Schuh et al. (2009) showed that considerable success could
be achieved in estimating large spatial scale ER and GPP sig-
nals in the midst of small spatial scale variability in fluxes.
We leveraged this result and put the problem in a Kalman
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filter framework in order to allow higher resolution spatial
estimation. This filter is of a somewhat simple variety and
allowed us to work with all portions of the inversion, such
as complete prior and posterior covariance matrices, explic-
itly. We then tested sensitivity to a number of pieces of the
inversion considered uncertain, including parameters in the
actual inversion as well as fixed contributions to the modeled
CO2 such as fossil fuel and boundary inflow. As far as we
know this is also the first paper providing a comparison of
inversion results derived by using two independent bound-
ary inflow estimates. Additionally, the effect of including
recently available high-resolution fossil fuel inventory data
is quantified.

2 Methods

2.1 Prior flux model and transport

The Simple Biosphere model (SiB) is based on a land-surface
parameterization scheme originally used to compute bio-
physical exchanges in climate models (Sellers et al., 1986),
but later adapted to include ecosystem metabolism (Sellers et
al., 1996a; Denning et al., 1996a). SiB has been coupled to
the Brazilian version of the Regional Atmospheric Modeling
System (RAMS; Pielke et al., 1992; Frietas et al., 2006) and
used to study PBL-scale interactions among carbon fluxes,
turbulence, and CO2 mixing ratio (Denning et al., 2003) and
regional-scale controls on CO2 variations (Nicholls et al.,
2004; Wang et al., 2006). This latest version of SiB is termed
SiB3.

In SiB3, Net Ecosystem Exchange (NEE) is composed
of two component fluxes, Gross Primary Productivity (GPP)
and Ecosystem Respiration (ER), which includes autotrophic
(canopy respiration and root respiration) and heterotrophic
respiration terms (due to decomposition of dead organic mat-
ter),

NEE(x,y,t)= ER(x,y,t)− GPP(x,y,t) (1)

wherex and y represent grid coordinates andt represents
time. High-frequency time variations of photosynthesis and
respiration are assumed to be well understood and easily
modeled processes, i.e. due to diurnally varying quantities
such as radiation, temperature, or longer term variations in
modeled quantities such as soil moisture etc. Photosynthesis
and assimilation are derived using a coupling of equations
based upon the work of Farquhar, Collatz, and Ball (Farquhar
et al., 1980; Collatz et al., 1992; Ball et al., 1987) while soil
respiration is based upon a rather simple function of temper-
ature and soil moisture and constrained in such a way that
annual NEE is equal to zero (Raich et al., 1991; Denning et
al., 1996).

Several papers have provided comparisons of models to
observations, largely by using eddy flux towers to measure
true fluxes of water, carbon, and energy (Baker et al., 2003,

Water 
(or Empty for Patches 2 & 3)

Evergreen Broadleaf

Broadleaf Deciduous

Mixed Deciduous 
Broadleaf and Needle

Evergreen Needle

C4 Short Grasses

C4 Crops (Maize)

Shrubs w Bare Soil

Ground Cover (Tundra)

No Vegetation (Desert)

Grasslands/Agriculture

Fig. 1. Dominant SiB3 biome classes for the first biome patch de-
rived from MODIS 12 Landcover product.

2008; Hanan et al., 2005). Longer-term, more persistent bi-
ases are estimated by solving for unknown multiplicative bi-
ases in each component flux after smoothing in space and
time. While these biases could result from incorrectly mod-
eled short term processes, such as errors in the daily develop-
ment of the planetary boundary layer, or short-term processes
not in the model such as seasonal fertilization and irrigation,
the main purpose is to capture longer-term processes not ex-
plicitly modeled such as land use change (Robertson et al.,
2000; Peterson et al., 1998), disturbances, anthropogenic fer-
tilization effects (Oren et al., 2001), managed forestry (Till-
man et al., 2000), and large scale carbon removal (Ciais et al.,
2007). This modeling is accomplished by convolving thein-
fluencefunctions generated from a lagrangian particle disper-
sion model, LPDM (Uliasz and Pielke, 1991; Uliasz, 1993,
1994; Uliasz et al., 1996; Zupanski, 2007), with gridded
Gross Primary Productivity (GPP) and total Ecosystem Res-
piration (ER) at each time step in SiB3-RAMS. The LPDM
transport scheme reverses advection derived from RAMS at
very fine time scales and parameterizes vertical turbulent dif-
fusion according to a Gaussian process. A large advantage of
this model is the ability to simulate transport of atmospheric
constituents at sub grid scales, reducing representation error
that might be caused by associating an observing tower with
a 40 km grid cell in the model. By tracking particles upwind,
backward in time, from the towers, one may make inferences
about the contribution of upstream GPP and ER sources.

In particular, we have estimated regional fluxes from at-
mospheric mixing ratios by assuming that the model of the
component fluxes is biased, and that the biases are smoother
in time and space than the fluxes themselves:

NEE(x,y,t)= (1 + βRESP(x,y)) ER(x,y,t) (2)

− (1 + βGPP(x,y)) GPP(x,y,t)

The model domain, shown in Fig. 1, consists of most of
the United States as well as a large portion of Canada and the
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northern portions of Mexico. Both SiB3 and RAMS were
run on a single 150×90 grid of 40 km cells, with SiB3 uti-
lizing 3 patches per cell to capture subgrid-scale variability
in land cover. RAMS meteorology was nudged with 40 km
forecast meteorology from the National Center for Environ-
mental Protection’s Eta model throughout the domain using
a 4 Dimensional Data Assimilation (4DDA) scheme to pro-
duce more reliable wind fields. Soil classes were calculated
from 5 min “%clay/% sand/% silt“ soil data from the Inter-
national Geosphere-Biosphere Programme (IGBP). Biomes
were extracted from the UMD classification scheme of the
MODIS 12 Landcover 1 km product and mapped to the most
similar SiB biome class for all cells and for each of the three
patches used. An exception are the C4 vegetation classes,
grasses and crops, which were projected onto the MODIS
biomes from (Wang et al., 2006). The crop characteriza-
tion is admittedly simple and more work is currently being
done to incorporate more accurate crop maps and more real-
istic crop modeling into SiB (Lokupitiya et al., 2009). SiB
has traditionally calculated fPAR, which defines the fraction
of photosynthetically available radiation that is absorbed by
the plant canopy, and Leaf Area Index (LAI) using satellite
derived NDVI fields. The code was changed to use fPAR
and LAI fields derived by the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) (Mu et al., 2007) and av-
eraged over appropriate biome-areas based upon the three
patch scheme. SiB3 was run with these 8-day fPAR and LAI
products that were provided by the Numerical Terradynamics
Simulation Group at the University of Montana who gener-
ated it for use in constructing the official Moderate Resolu-
tion Imaging Spectroradiometer GPP product.

Modeled carbon dioxide at the tower is calculated as the
sum of 3 component fluxes convoluted bytime and tower
dependent transport.

CO2(time, tower)= (3)

Transporttime, tower

Boundary Inflow(x,y,time)

+ Fossil Fuel(x,y,time)

+ Domain Biogenic Fluxes(x,y,time)


The boundary inflow component was calculated by con-

volving the influence functions from the LPDM model
over boundary CO2 fields derived using a global biosphere-
transport model. At any point in time, the boundary inflow is
the average of all upstream particles located in a 3 dimen-
sional 40 km thick rectangular “ring” around the domain.
CO2 resulting from the transport of fossil fuels to the tow-
ers is calculated by convolving the influence functions from
the LPDM model with surface fossil fuel flux estimates. In
particular, the boundary CO2 fields were calculated by com-
bining transport from the Parameterized Chemistry Transport
Model (PCTM) (Kawa et al., 2004; Parazoo, 2007) and pre-
calculated archived hourly SiB3 fluxes (Baker et al., 2007)
on a 1.25-degree by 1-degree global grid. The model was
spun up for 2000–2004 and the CO2 was centered around
the Northern Hemispheric mean CO2 for 2004. In addition

to this, results from the CarbonTracker project, which pro-
vide globally optimized CO2 concentration fields, are used
for comparison purposes.

Fossil fuel fields were constructed using recently available
high resolution Vulcan fossil fuel inventory fields (Gurney
et al., 2008), at a 10 km horizontal spatial scale and hourly
temporal scale. Previously available fossil fuel flux fields
were derived by distributing country-level fossil fuel sources
spatially as a function of population at a 1-degree resolu-
tion (Andres et al., 1995). The Vulcan fields provide many
improvements including the incorporation of mobile emis-
sion sources and power plants, often located in areas distant
from high density population centers, increased temporal res-
olution allowing the modeling of diurnal variability, and in-
creased spatial resolution allowing better delineation of high
density population centers. The sensitivity to the new fos-
sil fuel fields is tested by running inversions using both the
Vulcan fields as well as the Andres et al. (1995) fields.

The effect of this on boundary inflow estimates is that the
PCTM-SiB3 calculated boundary CO2 fields lacks the effect
of sources or sinks in 2004. Given the consensus opinion of
an annual mean sink for carbon resulting from the biosphere,
this means that the CO2 fields used will be biased somewhat
by the effect of not including this expected global sink. We
investigate the effect of this by including a comparison of
the inversion using CarbonTracker optimized CO2 concen-
tration fields for boundary inflow, which includes the effects
estimated sources/sinks outside of the regional modeling do-
main. As of this time, carbon dioxide resulting from forest
fires is not included in the global PCTM-SiB3 inflow or do-
main SiB3 runs, but is included in the CarbonTracker inflow
providing one more contrast between the two fields.

2.2 Observational data

Half-hourly averaged calibrated CO2 observations were pro-
vided for eight measuring sites (WLEF, Harvard Forest; Ur-
banski et al., 2007; ARM, BERMS, Fraserdale, Western
Peatland, WKWT, and Argyle – ME) for 2004 (Parazoo,
2007). Gerbig et al. (2003) found mean standard deviations
on the order of 0.6 to 1 ppm when viewing morning and af-
ternoon vertical profiles of CO2 in the mixed layer. As a con-
sequence, robust afternoon snapshot observations, at 12, 2, 4,
and 6 p.m. LT, are used in order to avoid inversion model sen-
sitivity to poor atmospheric transport modeling of extremely
stable and stratified nocturnal atmospheric conditions near
the ground. One exception is the WKWT tower in Moody,
TX. For most days, data at this tower consistently showed
high CO2 concentrations in the 12 p.m. LT records that were
more consistent with typical morning CO2 than with well-
mixed afternoon CO2. For this tower, mixed boundary layer
conditions appeared to be better represented by snapshot ob-
servations shifted by 2 h: 2, 4, 6, and 8 p.m. LT. The first
10 days of the year are not comparable due to a lack of
transport preceding 2004. In all there were 2433 missing
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observations, resulting in 4 (observations/day)× 8 (tow-
ers)× 355 (days)− 2433 (missing) = 8927 observations.

In a previous pseudo-data inversion using a very similar
model (Zupanski et al., 2007), the errors on the observations
were assumed to be 1 ppm for afternoon observations. Nev-
ertheless, relative to the inversion techniques presented in the
next section, the errors on these observations should include
errors due to calibration error, mapping error, transport er-
ror, and representation error. For this inversion, transport er-
ror and representation error are likely the largest components
which are notoriously tricky to quantify. Investigations into
the sensitivity of inversion test results combined with initial
maximum likelihood estimation results suggest errors in the
range of 5–6 ppm are appropriate for this particular inver-
sion. For the remaining inversions, the errors are assumed to
be identical and independently distributed (i.i.d.) mean zero
errors with standard deviation set to 5.5 ppm. This is a sim-
ple assumption and we certainly do not expect to the error to
be completely homogeneous across towers although at what
scale the observation error should be estimated is still some-
what uncertain. We also note that there certainly is expected
to be autocorrelation in the errors within a daily time frame
so that the “effective” number of observations is likely much
less than 4 each day. The end result is that the observational
error term over multiple observations is probably estimated
as being somewhat lower than reality. For example, a mean
of 4 afternoon observations has an estimated 2.75 ppm er-
ror, based on Gaussian 5.5 ppm independent errors for each
observation. In reality, the error of the mean observation is
probably larger due to likely temporal correlation in the ob-
servation errors.

2.3 Climatic conditions for 2004

The 2004 year was the 6th wettest in the contiguous United
States over the preceeding 110 years (1894–2004). It was
also warmer than on average. Nevertheless, there was a great
amount of variability in precipitation and temperature as a
function of location and season. Drought continued in the
west through the summer of 2004, essentially prolonging
a multi-year period of drought conditions. The spring was
also very dry for the southeast, extending a period of dry
conditions from late in 2003. However, summer brought in-
creased precipitation to the east and southeast, culminating in
enormous amounts of rain in late summer and early fall due
to an extremely active hurricane season. The south (Texas,
Louisiana, Mississippi, Arkansas, Oklahoma, and Kansas)
had the wettest summer on record and was much cooler than
average. These conditions were important as they provided
initial conditions for SiB3 that involved soil moisture in-
duced plant stress over large areas of the United States.

2.4 Inversion technique

Standard multivariate Gaussian assumptions are made and
data are assimilated using a modified Kalman Filter algo-
rithm (Kalman, 1960). In particular, for an initial length
n CO2 measurement vectory representing the first set of
measurements, lengthm unknown CO2 flux bias vectorβ
(dimensionless),n×n observation error covariance matrix
6 (ppm2), n×m Jacobian flux-transport matrixG (ppm),
length m prior flux bias estimateβ0 (dimensionless), and
m×m model-prior mismatch covariance matrix60 (dimen-
sionless), the Bayesian statistical assumptions are a Gaussian
distribution on the “measurement” errors as well as a Gaus-
sian distribution on the a priori distribution ofβ, i.e.:

y|β, 6 ∼ N(Gβ, 6) (4)

β ∼ N(β0, 60)

The posterior distribution of the flux bias vector can be
solved for analytically and is:

p(β|y, 6)∝ −
1

2
(5)[

(Gβ − y)T 6−1(Gβ − y) + (β − β0)
T 6−1

0 (β − β0)
]

∼ N

((
6−1

0 + GT 6−1G
)−1(

6−1
0 β0 + GT 6−1y

)
,((

6−1
0 + GT 6−1G

))−1
)

With a little bit of algebra, one can rewrite the mean of the
posterior distribution of the mean, giving the Kalman-filter
updating equation for the mean.

E[β] = β0 +

(
GT 6−1G + 6−1

0

)
GT 6−1(y − Gβ0) (6)

The posterior mean and variance ofx are then fed into
the next filter step with a new set of measurements. This
particular inversion estimates biases over 7-day periods using
available data from that 7-day period of time. Therefore, bias
estimates for both ecosystem respiration and GPP as well as
corresponding variance estimates are available for all of 2004
with the bias estimates changing with a weekly resolution.

Two difficulties often arise when using filter-style correc-
tion schemes. The filter estimates can drift away from re-
alistic values if the data are not plentiful or precise enough
to constrain it. Secondly, the nature of the Kalman filter at
each step is to create posterior variance estimates that are in
general smaller than the prior estimates. This can essentially
cause the filter to get “stuck”, when an explicit dynamical
model of the biases is not available, and thus produce unreal-
istically small posterior variance estimates around the biases.
There is generally no easy solution to this problem. Artifi-
cially inflating the posterior variance at each filter step is one
method in which one can try to circumvent (Zupanski et al.,
2007). This accommodates the fact the biases are likely to
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change in reality and it allows the filter to consider a wider
range of possibilities for the bias factors. However, it does
not necessarily constrain the biases to any particular “rea-
sonable” region of values allowing the bias estimates to drift
into unrealistic parameter space. Therefore, we have chosen
to weight the filter at each step with a “grand” prior. This
effectively handles both of the preceding problems. With re-
spect to our inversion, there will be three pieces of informa-
tion at each step, the grand prior which is derived from the
forward SiB3-RAMS model with an error assumption, the
local prior which is derived from the previous filter step’s
posterior flux bias distribution, and the data which forms the
statistical likelihood function. In some sense, this new piece
of the covariance structure provides a bound upon how much
the inversion can “learn” about the bias structure.

In order to quantify, we denote the grand prior as a mul-
tivariate Gaussian distribution aroundβgrandwith covariance
matrix σ 2

grand6grand, and additional weight factorw, and we
rewrite the expression given in Eq. (4) as:

p(β|y, 6) ∝ −
1

2

[
(Gβ − y)T σ−2

obsI (Gβ − y) (7)

+ (β − β0)
T σ−2

0 6−1
0 (β − β0) + (β − βgrand)

T

× wσ−2
grand6

−1
grand(β − βgrand)

]
Thusβ is distributed as a multivariate Gaussian with pa-

rameters:

Mean(β)= E[β] (8)

=

(
w−1σ−2

grand6
−1
grand+ σ−2

0 6−1
0 + GT σ−2

obsIG
)−1

×

(
wσ−2

grand6
−1
grandβgrand+ σ−2

0 6−1
0 β0 + GT σ−2

obsIy
)

Variance(β) = E[β2
] − (E[β])2

=

((
wσ−2

grand6
−1
grand+ σ−2

0 6−1
0 + GT σ−2

obsIG
))−1

Equation (7) specifically separates out the variance scalars,
σ 2

grand, σ
2
0 , andσ 2

obs from the covariance matrices, leaving the
covariance matrices essentially scaled to 1. Thew weight is a
redundant factor and is simply included to facilitate easier in-
terpretation of tightening/loosening of the grand prior covari-
ance (around the SiB3 derived a priori carbon fluxes). Un-
less otherwise specified, this weight,w, on the grand covari-
ance matrix is set to 2. This means that the initial variance
around the grand prior is increased, thus providing a weaker
constraint. For the initial filter step, only the grand prior is
used. After that point, there exist both a grand prior and a
prior (from the posterior of the previous filter step). The in-
version is further constrained by the assumption of spatially
correlated errors in the grand prior, i.e. the covariance matrix
6grandwill take on the following form.

6grand=

[
6Respg,prior 0

0 6Assimn,prior

]
(9)

The respiration and GPP covariance matrices are each
formed from the exponential covariance function, whereti,j
is the distance between pointsβi andβj .

Cov(βi, βj ) =

{
σ 2

0 (1 − α0) exp
(

− ti,j
h0

)
,i 6= j

α0σ
2
0 , i = j

(10)

Theh0 parameter is the decorrelation length scale parame-
ter, giving the distance at which the covariance between two
points is equal toσ 2

0 (1−α0)e
−1. The σ 2 parameter is the

scalar variance parameter and determines the variance of the
marginal distribution of the particular flux component. The
parameterα0 controls what percentage of the covariance can
be attributed to spatial covariance, as opposed to spatially in-
dependent errors, often termed “nugget” variance. While the
“nugget” parameter is an important parameter if one is fitting
a rigorous statistical spatial model to the errors, for regular-
ization purposes it is often set to zero which is what we will
do for the remainder of the paper.

It is important to note that the use of a high resolution
grid for the inversion certainly does not imply that mean-
ingful inferences can be made at the finest scale. Assumed
decorrelation length scales of 500 km and greater certainly
imply a strong constraint upon the solution effectively giv-
ing somewhat smoothed solutions spatially. For example,
while 540 parameters are used spatially, there are only 8 tow-
ers providing information at any point in time (assuming no
missing data) and those are only afternoon observations. In
effect, if the wind is coming from N.W. portion of the domain
to all the towers, then the inversion can only learn about the
N. W. portion of the domain and only within the confines of
the differences in upstream sampling footprints and the dif-
ferences in the observed CO2 at the towers. For example,
based upon a 1000 km decorrelation length scale smoothing
scheme with a two week assimilation cycle, the effective de-
grees of freedom of the data used in the paper might only be
between 2 and 7, with the E dimension being estimate be-
tween 15 and 30 (Park and Xu, 2009). This can be visualized
by noticing the scale of the corrections in many of the figures
in the paper.

It was shown in Schuh et al. (2009), that under isotropic er-
ror type conditions (for assumed and “true” errors) that this
inversion model is robust to small spatial scale random de-
viations in flux bias and that post-aggregated (in space) es-
timates can be very good even when using a fairly sparse
network of towers observing CO2. The usefulness of the
high resolution grid allows one to separate the impact of a
tower residual across space more effectively. For example, if
a tower only saw a corner of a somewhat large inversion re-
gion than the correction imposed on that corner is essentially
projected onto the entire inversion region. This essentially
arises from a lack of uniform sampling over every inversion
“grid cell”. The effect of this potential error is of course de-
pendent upon the “actual” structure of the errors which is
not often known. Nevertheless, regardless of whether one
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chooses to assume isotropic error conditions through a spatial
smoothing such as ours, or larger inversion regions similar to
Peters et al. (2007), given the unconstrained nature of the in-
version problem, it is always important to assess the impact
of varying certain unknown parameters in the inversion, such
as the choice of inversion regions: grid vs biome, localization
schemes, the spatial decorrelation length scales, the weight
given to the “grand” prior, and the fixed CO2 contributions
from both the boundary inflow and fossil fuel sources.

2.5 Sensitivity

The inversion essentially guarantees some improvement in
prediction of observed CO2 (Eq. 5). However, when using
a regression style approach in a heavily unconstrained envi-
ronment, this improvement can often be overstated because
of the great freedom the inversion has to fit the data. There-
fore, it is often desirable to go beyond simply comparing
observed carbon dioxide at the towers to model-based pre-
dicted carbon dioxide. Comparing model observations to in-
dependent observations not used in the inversion, comparing
models which predict similar quantities, as well as testing the
sensitivity of the model to variations in unknown parameters
are all methods of generating more confidence in estimates.

We used a variety of different procedures to test the sensi-
tivity of the inversion. Therefore, we first test the sensitivity
of the inversion to varying the inflow of CO2 at the bound-
aries. To do this, we derive boundary inflow to the 8 towers
using the LPDM model and optimized carbon dioxide con-
centration fields from the CarbonTracker project (Peters et
al., 2007). Inversion results are then compared with the re-
sults derived from the LPDM model and the PCTM inflow.
Secondly, we vary several different variance parameters and
derive annual domain-summed NEE and tower observation
based RMSE based upon the varied parameters. Thirdly, we
use a re-sampling procedure in which we create 45 differ-
ent observation data subsets by holding out a randomly se-
lected 50% of the observation data for each. Each set of data
is run through the weekly inversion scheme and the sensi-
tivity of the predicted CO2 at the towers and the estimated
flux biases is explored. This provides estimates of the vari-
ability of the flux correction factors and can be used to as-
sess the sensitivity of the source/sink to the constraint pro-
vided by the data. Using the held out data as independent
evaluation data and the complementing data as training data
for the inversion, one may also derive a more accurate esti-
mate of Root Mean-Squared Error (RMSE) of the inversion-
optimized fluxes. We test the impact of the high resolution
Vulcan fossil fuel inventory on the inversion results by com-
paring inversion results relying upon Vulcan to those results
utilizing the Andres et al. (1995) fossil fuel inventory.

SiB3 has been evaluated at many sites and over many time
periods, nevertheless, the particular model run used for the
a priori flux estimates was not optimized to fit the flux data
at any site in particular. Even though there is a mismatch in

representation, with the flux towers representing footprints
of less than a square kilometer and the inversion results rep-
resenting flux estimates on the scale of thousands of square
kilometers, we believe that these comparisons are of value,
especially in locations that are more spatially homogeneous
than others, such as grasslands and large forest reaches. This
is then the fourth comparison we make.

3 Results

As was indicated in the previous section, there are a num-
ber of variables that the inversion will likely be sensitive to
and therefore the results are expected to be quite variable.
For results, we choose to present one particular case with a
fixed set of inversion inputs as an initial case study and then
use it to compare the effect of varying the boundary inflow
and the source of the domain fossil fuel fluxes. With refer-
ence to the preceding section and Eq. (7) in particular, the
following values are used for these inversions:σgrand=0.25,
σ0=0.25,σobs=5.5 ppm,w=2, h0=1000 km. In particular, a
value ofσgrand=0.25 would mean that we expect that approx-
imately 68% of the GPP and ER biases are within±25% of
the original SiB3 estimated fluxes, with 95% within±50%.
This variation when combined with positive spatial correla-
tions was shown to provide a reasonable a priori range of
annual domain-summed NEE. These deviations must gener-
ally be kept to less than 30–40% to ensure that posterior ER
and GPP fluxes are not reduced by more than 100%, which
makes no conceptual sense. We then test the sensitivity of
the results over a number of varying inversion inputs using
the PCTM boundary conditions and the Vulcan fossil fuel
flux field.

3.1 General structure of results

CO2 can be predicted by invoking the relationship shown in
Eq. (3). The predicted mean observed CO2 is derived as
Gx̂ where x̂ represents one (for the prior fluxes) plus the
inversion-optimized flux biases. Using the PCTM boundary
conditions and the Vulcan fossil fuel inventory, a comparison
of the inversion-corrected posterior predictions at the towers
to the observations is shown in Fig. 2. For domain-summed
temporal plots, NEE is calculated via Eq. (2) while ER and
GPP are calculated via the two respective summands on right
hand side of that equation. These domain-summed temporal
results are shown in Fig. 3.

The observed carbon dioxide concentrations contain infor-
mation that infers a dampening of the a priori annual GPP
cycle, and hence the a priori annual ER cycle (due to the
strong correlation of the annual sums of each). Since both
GPP and ER are significantly dampened, it is not surprising
that the NEE signal is dampened as well. Furthermore, the
data suggest a weak temporal shift in the prior NEE signal.
This manifests itself as a stronger, but more gradual onset
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Figure 3:  Time series plots of carbon dioxide residuals based upon SiBRAMS prior (red) and 

inversion posterior (blue).  
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Fig. 2. Time series plots of carbon dioxide residuals based upon SiBRAMS prior (red) and inversion posterior (blue) (observations – model).
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Figure 4:  Plots of prior and posterior estimates for GPP, ER, and NEE.  Results are shown for a 

single inversion while the confidence intervals are derived from an ensemble of 100 inversions. 

 
Fig. 3. Plots of prior and posterior estimates for GPP, ER, and NEE.
Results are shown for a single inversion while the confidence inter-
vals are derived from an ensemble of 45 inversions.

of spring, followed by a weaker overall carbon sink over the
middle and late summer periods. It was brought to our at-
tention by Steve Wofsy (Harvard U.) that this discrepancy
in a priori and a posteriori GPP and respiration fluxes could
arise from a bias in the meteorological data that was driv-
ing SiB3 to produce the a priori fluxes, in particular biases
in shortwave radiation. Upon investigation and comparison
of several different reanalysis products to recently available
Ameriflux radiation observations, it does appear that nearly
all of the reanalysis products investigated had somewhat uni-
formly, and far from insignificant, positive biases in short-
wave radiation. This certainly could play a role in the a pri-
ori GPP and respiration fluxes being significantly larger than
they should be. This is currently being investigated under
the guise of the North American Carbon Program (NACP)
by Daniel Riccuito (Oak Ridge National Laboratory), and a
manuscript is currently in preparation describing further the

differences found between observations and reanalysis prod-
ucts and the possible effect on biospheric carbon flux esti-
mates. Nevertheless, this is an a priori estimate of fluxes,
and although we certainly would like it to be close to the
posterior estimate, it simply represents the best knowledge
we currently have about the processes.

We use the resampling procedure, that was first mentioned
in Sect. 2.5, to account for variability that might be associ-
ated with over fitting the model and which provides addi-
tional variability to the standard covariance estimates of the
biases given in Eq. (6). Forty-five different inversions are
run, each based upon a different subsample of the observa-
tions. Assuming temporal independence of the errors in the
filter, one may simulate properties of the annual NEE proba-
bility density functions (pdf) for each of these 45 inversions
by using the posterior covariance provided at each step of the
Kalman Filter for each inversion. A 95% Confidence Inter-
val (CI) for the entire domain can be calculated at each step
of the filter for each of the 45 inversions. The CI shown in
Fig. 3 then characterizes variability in the NEE by selecting
the 95% CI of each set of 95% CIs for each weekly time step.

The ensemble mean of the domain summed annual NEE
flux is approximately−0.68 Pg/yr while the standard devi-
ation of this estimate is about 0.11 Pg/yr. It is important
to note that this standard deviation estimate does appear to
be too small, giving tighter bounds on the flux than found
in other inversion papers (Gurney et al., 2002; Peters et al.,
2007). An additional source of variability in the estimate is
discussed later (Sect. 3.4) and likely provides another 0.1–
0.15 Pg/yr to this standard deviation estimate. The spatial
representation of these sources and sinks can be seen in
the first panel of Fig. 7. Depictions of this variability in
a spatial framework are shown in Fig. 4. This variability
is partitioned into two pieces, variability associated with the
spread of mean estimates over the 45 inversions (measure of
over fitting) and variability associated with summing up the
posterior variances at each filter step (regular KF variance)
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Table 1. Biases in Tower CO2 partitioned by season.

Tower Winter.Prior.Bias Winter.Posterior.Bias Summer.Prior.Bias Summer.Posterior.Bias

AMT (ME,USA) −3.87 −1.03 8.10 2.10
ARM (OK,USA) −4.40 0.14 −3.81 0.17
BERM (SASK,CAN) −5.09 −0.92 8.07 3.88
FRA (ONT,CAN) −6.99 −1.31 9.68 3.92
HVD (MA,USA) −0.52 −0.49 4.74 −0.09
WKWT (TX,USA) 0.86 0.35 0.30 1.11
WLEF (WI,USA) −5.15 0.33 3.47 0.88
WPL (ALB,CAN) −3.76 0.54 2.89 0.69
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Figure 5: Uncertainty in annual NEE.  The left panel is the result of running 100 inversions each 

using a randomly selected 50% of the data  and then calculating the variance of each cell’s mean 

estimate, over the 100 inversions, and summing over each of the weekly filter cycles.  Finally, the 

square root of this summed variance (standard deviation) is displayed and is a measure of the 

uncertainty of the mean estimate due to model over-fitting.  For the right panel, the summed annual 

variance in NEE is calculated for each inversion, from the weekly filter estimates, and the the 

square root of this (standard deviation) is shown for each cell.  These plots aim to provide a 

measure of the uncertainty of each cell’s NEE estimate, incorporating the correlation between ER 

and GPP in each cell, but not incorporating the spatial correlation in the covariance matrices. 

Square root of the diagonal of the covariance matrix (standard deviation) of Annual NEE (gC/m
2
) 

Fig. 4. Uncertainty in annual NEE. The left panel is the result of running 100 inversions each using a randomly selected 50% of the data
and then calculating the variance of each cell’s mean estimate, over the 100 inversions, and summing over each of the weekly filter cycles.
Finally, the square root of this summed variance (standard deviation) is displayed and is a measure of the uncertainty of the mean estimate
due to model over-fitting. For the right panel, the summed annual variance in NEE is calculated for each inversion, from the weekly filter
estimates, and the the square root of this (standard deviation) is shown for each cell. These plots aim to provide a measure of the uncertainty
of each cell’s NEE estimate, incorporating the correlation between ER and GPP in each cell, but not incorporating the spatial correlation in
the covariance matrices.

evaluated over all 45 inversions. Besides the spatial display
of posterior variance information for NEE, which roughly
tracks the convolution of the sampling footprint of the net-
work and the prior ER/GPP signals, the results show that
over fitting the model may provide a significant source of
variability comparable to that which is normally constructed
from each filter step’s posterior covariance matrix.

The residuals from the model fit are generally symmet-
ric and do not appear to deviate substantially from normal-
ity (Fig. 5). There is a slight but pronounced positive skew
to the residuals indicating that when the residuals deviate
most strongly from zero, the observed CO2 is greater than the
modeled CO2. Biases remain in the inversion process, likely
a result of residual pdfs’ deviations from symmetry. Sites in
the north and northeastern portion of the domain appear to be
most sensitive to this, in particular AMT and Harvard Forest
(Table 1). These sites seem to be affected more by a strong

a priori seasonal cycle than the other sites. Additionally, we
note that the these towers are in relatively close proximity to
the most populated areas of North America and it is possible
that occasional spikes in anthropogenic emissions from the
northeast coast of the United States could impact tower con-
centrations. Weekly chi-square statistics were calculated to
diagnose the model’s performance. Values near to one indi-
cate that the assumed errors are being estimated reasonably,
a priori. The weekly chi-square innovation statistics are gen-
erally near 0.5 from January through May and then around 1
for the summer and remainder of year. The innovation statis-
tics show more temporal variability in the summer time. The
low value in the winter time in indicative of some hetero-
geneity in the model-data residuals, seasonally, and that the
assumed errors in the winter might be too large. In essence,
this might weight the model too heavily towards the prior
which might imply that magnitude of the winter time NEE
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Fig. 5. Estimated probability density functions for modeled CO2 residuals (observations – model), broken out by season and tower.

adjustment, which is generally a C sink under our a priori
flux scenario, might be too weak.

3.2 Sensitivity and robustness of results to inflow

Inflow of CO2 from the boundaries has typically been a large
concern of regional models (Gerbig et al., 2003; Peylin et al.,
2005). In extremely limited domain problems, the variance
of the CO2 coming in from the boundary can easily dwarf
the changes inside the domain due to local biotic uptake and
release. Therefore it is of interest to gauge the sensitivity
of the inversion to varying boundary inflows. The bound-
ary conditions included in this model were constructed from
a global simulation using SiB3 and PCTM (Parazoo et al.,
2007). The CarbonTracker project has provided CO2 mix-
ing ratio data based upon globally optimized fluxes (Peters
et al., 2007). SiB3 has no annual source/sinks whereas Car-
bonTracker includes an annual source/sink estimated from
observations of CO2. A plot of the difference between the
two inflows is shown in Fig. 6. The inflow annual mean
and temporal pattern is very similar for PCTM and Carbon-
Tracker with the main difference being a seasonally stronger
cycle in the PCTM-SiB3 results, likely a result of the under-
lying biosphere model, SiB3, providing a stronger seasonal
GPP/NEE signal than the corresponding CASA model used
in CarbonTracker. In addition to running comparison inver-
sions between these two CO2 inflow estimates, we also run
the inversion with a fixed inflow estimate of 378 ppm repre-
senting the annually averaged PCTM inflow over the period

of the simulation in order to show the necessity of reasonable
boundary inflow values in calculating source/sink estimates.
Figure 7 shows a comparison plot of maps of the annual

mean NEE estimate based upon CarbonTracker (w/CASA),
PCTM (w/SiB3), and the fixed inflow condition. The re-
sults are similar for the CarbonTracker and PCTM inflows.
Both results have similar spatial and temporal characteris-
tics but differ mainly in magnitude. The PCTM-based in-
version results in a sink of 0.1–0.2 Pg/yr more than that of
the CarbonTracker-based result. The PCTM-based boundary
conditions do not account for the expected global carbon sink
outside of the inversion domain, which forces the inversion
to increase the North American sink to compensate. This
results in the PCTM-inflow based inversion having a larger
annual sink estimate than the CT-inflow based inversion. The
sink estimated with the PCTM inflow was 0.65 Pg/yr while
the sink estimated with the CarbonTracker inflow was esti-
mated at 0.48 Pg/yr. It does seem somewhat surprising that
the results from the two inflows are still close, within approx-
imately 30% of one another. This indicates that local obser-
vations may be affected significantly more by local fluxes
than by larger scale fluxes in distant locations outside of the
model boundary.

3.3 Sensitivity of results to fossil fuel inventory

Until the release of the Vulcan fossil fuel inventory in 2008,
most researchers were reliant upon the Andres et al. (1995)
fossil fuel inventory, which was released at annual time
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Fig. 6. Figure shows the effect of boundary inflow CO2 upon tower CO2 concentrations. In particular, this figure shows the “difference”
between estimates of CO2 arriving at tower due to two distinct boundary inflows (1420 sequential “12/2/4/6 p.m.” observation sequences for
each of 8 towers).

scales and at a 1-degree resolution over the globe. For many
large-scale inversion applications, this inventory is adequate.
However, for higher resolution studies within the United
States, the Vulcan fossil fuel inventory provides a dramatic
improvement in both space and time accounting of fossil
fuel fluxes. The main difference between these inventories is
the redistribution of some fossil fuel sources from population
centers to more distant locations representing mobile sources
and power plants. The Vulcan fossil fuel flux estimates are
at a much higher resolution in both time and space. Previ-
ous inversions had to grapple with the fact that some observ-
ing stations are located within enormous fossil fuel flux re-
gions. For example, a semi-rural location like Harvard Forest
would very likely be located in the same grid cell as the large
metropolitan city of Boston. Given no sub-annual temporal
resolution to the fossil fuel fluxes, an observing tower located
at Harvard Forest was often seeing a 24 h continuous stream
of fossil fuel fluxes arising from a city over 100 km away.
However, the 10 km horizontal resolution of the Vulcan in-
ventory allows these to be separated and additionally pro-
vides a diurnal and seasonal estimate of these fluxes, which
is important for inversions based upon hourly observations.

In order to gauge the impact of incorporating the Vul-
can data, we first contrasted the contributions to each of the
8 towers from each of the inventories. For many of the sta-
tions, the afternoon differences between the two were very
small. Differences at the ARM site in Oklahoma, the WLEF

site in Wisconsin, the Canadian sites, and the Argyle, Maine
site were on the order of a few ppm. Differences at the
Moody, Texas tower were in the range of−5 to 5 ppm. While
the differences across most towers were relatively small, the
differences at Harvard Forest were between−25 and 30 ppm!

The difference in the annual NEE estimate is shown in
Fig. 8. The effect on the inversion is far from trivial with
differences of up to 150 g/m2 per year recorded along the
northeast coast of the United States, similar in magnitude to
the maximum annual sinks estimated by the inversion. These
differences are a result of coarse fossil fuel flux fields pro-
viding artificially high sources of CO2 to the Harvard Forest
tower which must be neutralized via a large local sink.

3.4 Sensitivity and robustness of results to prior
variance structure

A test of the sensitivity and effect of the prior upon results
is important because of the use of an informative Bayesian
prior, that is, a prior flux estimate in which the inversion will
likely be sensitive. With reference to Eqs. (5) and (7), the
w, σ 2

0 , andh0 parameters are varied and results are shown
in Fig. 9. These figures show that results are sensitive to
nearly all of these parameters, providing different degrees of
RMSE and sink strength depending upon the particular com-
bination. In particular, sink estimates range between 0 and
1 Pg/yr. The ensemble of estimates, over the various possible
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without modeled annual source/sink (PCTM w/SiB), one with mod-
eled source/sink (CarbonTracker w/CASA), and a uniform fixed
378 ppm inflow. Negative values denote land uptake of carbon.
Summed annual NEE is−0.65, −0.48, and 0.38 PgC/yr, respec-
tively.
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Fig. 8. Difference in annual sink inferred by inversions based upon
the Vulcan fossil fuel inventory and the Andres et al. (1995) fos-
sil fuel inventory. Positive values (purple) indicate carbon sinks
were stronger using Andres inventory. Spatially-summed annual
difference between Vulcan-based NEE estimate for 2004 and An-
dres (1995) based NEE estimate for 2004 is less than 0.01 PgC.

a priori variance parameters, has a standard deviation of
approximately 0.2 PgC/yr. This likely contributes another
0.1 to 0.15 PgC/yr (depending upon the existence of corre-
lation between the variance shown here and earlier variance
estimates due to jackknife resampling and the Kalman filter
posterior variances) to the initial standard deviation estimate
of 0.11 Pg/yr given earlier. This would give an adjusted stan-
dard deviation estimate of approximately 0.2–0.25 PgC/yr to
the posterior annual NEE estimate shown in Fig. 3.

An RMSE-weighted average of the sink estimates show
a sink of 0.57 PgC/yr, 20% higher than our single case sce-
nario that we have followed throughout these results. Values
very near the lower left of the plot are somewhat unrealis-
tic since low spatial correlation (h0) and a low variance on
the prior (σ2

0 ) will not provide a reasonable enough range
around the prior to provide a realistic posterior sink estimate
which generally is thought to range between 0 and 1.5 PgC/yr
(Schimel et al., 2000; Gurney et al., 2002) inter-annually.
Increasing either the variance multiplier (alongx-axis) or
the spatial decorrelation length scale (alongy-axis), or both
jointly, increases the error variance around the a priori mean
allowing more realistic domain-wide summed posterior flux
estimates. Therefore if one “de-weights” these sink estimates
occurring in the lower left hand portions of the panels in
Fig. 9, the RMSE-weighted sink will likely increase to more
than 0.57 PgC/yr.
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Fig. 9. Sensitivity of (a) sink estimate and(b) root mean squared error to varying covariance parameters in inversion. For example, a
set of parameter values likew=0, h0=600 km,σ0=0.35 provides the estimatew/the lowest RMSE (b) and an estimated sink of approxi-
mately 0.55 PgC/yr (a). Nevertheless, qualitatively, this represents a maximum departure from the prior and thus must be viewed with some
skepticism due to the likelihood of overfitting the data.

The weight of the grand prior (w) has two effects. First,
it constrains solutions back towards the prior, essentially an-
choring the Kalman filter so that, over time, it does not drift
too far from the prior. Given the fact that this grand prior
is fixed in time, it also provides a degree of variance infla-
tion (over the regular KF) by providing a lower bound on the
prior variance for each filtering step. It is interesting to note
that, for cases in which the global prior is weaker (bottom
two panels), the maximum sink estimate occurs on the inside
of the plot bounds and not at the boundary. The Kalman filter
becomes more entrenched without the grand prior since there
is no lower limit on the prior variability at each inversion fil-
ter step and there is no inflation. Therefore it is likely that the
initial reduction in respiration and associated “sink” of car-
bon in the early months of the year becomes entrenched and
leaves a strong sink signature on the rest of the year resulting
in the largest sink estimates. We did not test any additional
forms of variance inflation on the model and acknowledge
that additional efforts are needed to construct more robust
filter techniques.

3.5 Comparison to CarbonTracker flux estimates

Given the fact that the majority of the underlying observa-
tions supporting the inversion were also used in the Carbon-
Tracker project, one would expect posterior flux estimates to
be somewhat similar. One of the most important differences
between these inversions and CarbonTracker is the optimiza-
tion of encompassing global fluxes, which affect CO2 con-
centrations within our domain. However, this can be mit-
igated somewhat by the use of optimized CO2 concentra-
tions from CarbonTracker in the inversion. Under this sce-
nario, one would expect the inversion results to be similar to

CarbonTracker but there are still many differences. As can
be seen in Fig. 10, the carbon fluxes in the priors, CASA and
SiB3, play an important role in the posterior estimates. The
posterior estimates of both inversion models display the sig-
nature of the a priori fluxes prominently. These results would
lead one to believe that either the data does not provide suf-
ficient constraint or the covariance structure is specified too
tightly around the prior.

The results can be aggregated up to SiB biomes (Fig. 1)
which are presented in Table 2. The aggregated results show
somewhat close agreement with Peters et al. (2007). Be-
cause of the differences in land cover classifications between
Peters et al. (2007) and the State of the Carbon Cycle Re-
port (SOCCR, 2007), it is difficult to directly compare re-
sults. Furthermore, as was shown earlier, the magnitude of
the domain-wide annual NEE sink is very sensitive to inflow
assumptions although the spatial configuration of the sources
and sinks seem much more robust. In this fashion, the pro-
portion of the annual sink due to forests, both conifers and
deciduous, ranges between 30% and 37% depending upon
inflow choice. This is certainly within the confidence bounds
of the estimate given in the SOCCR report as well as very
similar to the estimates given in Peters et al. (2007).

One of the most significant contrasts is the placement of
the carbon sink on agricultural lands. Peters et al. (2007)
shows a large effective sink in the northern Great Plains cen-
tered near the state of Iowa where there are very large ex-
panses of corn fields. Our results indicate a strong effec-
tive sink in the southern portion of the Great Plains more
in the vicinity of large wheat growing operations. On-
going research in this region of the United States (http://
www.nacarbon.org/nacp/mci.html) seems to validate the ex-
istence of an effective sink in the northern Great Plains while
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Table 2. Total Posterior Net Ecosystem Exchange by Biome (negative indicates “into biosphere”).

Biomes Using CarbonTracker boundary Using PCTM boundary

Conifers(Evergreen Needle) −83 TgC −111 TgC
Mixed Deciduous Broadleaf and Needle, Braodleaf Deciduous, Evergreen Broadleaf −49 TgC −124 TgC
Grasslands and Agriculture −261 TgC −337 TgC
Shrublands, Desert and Ground Cover −43 TgC −54 TgC
Total −436 TgC −626 TgC
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Fig. 10. July-August-September comparison. Top panels concern CarbonTracker and lower panels concern our inversion. Left panels show
a priori NEE, middle panels show inversion adjustment, and right panels show a posteriori NEE.

agricultural statistics and other recent work (Riley et al.,
2009) seem to validate a possible southern Great Plains ef-
fective sink as well.

3.6 Comparison to filled level 4 Ameriflux data at
Southern Great Plains

Posterior respiration and GPP estimates from the model can
also be compared to Ameriflux level 4 data. As indicated
earlier, there is a spatial representation mismatch in doing so
due to the fact that the model estimate is an average over ap-
proximately 1600 km2 and the associated flux tower estimate
is over a much smaller footprint, likely less than 1 km2. Nev-
ertheless, some useful comparisons and observations can be
made. Figure 11 shows comparisons of the model to the ob-
servations for weekly ER and GPP at three Ameriflux sites,
which appear in the more observation constrained portion of
the model domain. The ARM site is one of the more con-
strained sites in the domain and lies in a relatively homoge-
nous landscape making it an excellent candidate for analysis.

The prior site NEE estimate appears to be improved on av-
erage by the posterior flux estimates. In particular, the prior
model is corrected significantly in the summer when it pre-
dicts significant respiration occurring. Clearly one can see an
early spring winter wheat signal in the observations, forming
a significant amount of carbon drawdown over an 8–10 week
period. SiB3 necessarily balances GPP and ER annually and
is thus forced to redistribute this carbon into respiration in
other portions of the year. This is the likely reason for dis-
placement of the prior estimate in the summer. The posterior
corrects for a large portion of this but the large distance be-
tween the prior and observed fluxes make a complete correc-
tion difficult. Just as important, but perhaps more subtle, is
the fact that the inversion is able to provide significant cor-
rections to ER and GPP separately. SiB3 appears to signif-
icantly overestimate GPP. However, due to the annual NEE
balance constraint, SiB3 will overestimate ER as well, pro-
viding an NEE signal that appears very reasonable. If the
forward model is only compared to NEE estimates at various
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sites then this fact can be easily overlooked but is likely very
important to biosphere dynamics on certain time scales.

3.7 Evaluation of annual NEE source/sinks against
ancillary data and hypotheses

Using two sets of boundary conditions, we arrived at a final
sink estimate of 0.5–0.7 PgC/yr±0.25 PgC/yr. This is similar
in strength to CarbonTracker’s sink estimate of 0.69 PgC per
year (0.79 PgC/yr “natural” sink minus implicit 0.1 PgC/yr
“fire” contribution) and other estimates currently emerging
from an ongoing top-down synthesis project. It is clearly
possible that other globally based inversions provide more
constraint on certain areas of North America, such as the Pa-
cific Northwest forest regions of North America, the South-
eastern United States, or extreme Northeast Canada. Both of
these areas have large annual GPP signals and are thus capa-
ble of being a strong source/sink of CO2. However, our inver-
sion results show a generous sink in the coastal N. W. forests
while CarbonTracker shows little sink there. Furthermore,
CarbonTracker’s sink is largely located in the agricultural
Midwest of the United States (and a portion of Canada), an
area reasonably constrained by the observation network we
have used.

On the other hand, perhaps the globally based sink esti-
mates are too high. The recently completed SOCCR report
provides an inventory-based sink estimate for North America
of approximately 0.66 PgC per year (land sink) using a vari-
ety of data sources collected over the last ten to fifteen years.
Uncertainty is presented as a 95% confidence interval, 0 to
1.32 PgC. This is similar to what we have recovered in these
inversions. However, this is a mean sink estimate over many
years and 2004 is believed to be a year in which the sink in
North America was very strong, likely putting the SOCCR
estimate closer to 0.8–0.9 PgC/yr, the upper range of their an-
nual estimates. Stephens et al. (2007) called into question the
magnitude of the Northern Hemispheric (and North Ameri-
can) global annual NEE sink which has been a cornerstone
of inversion results for the last 10 years (Fan et al., 1998;
Gurney et al., 2002; Peters et al., 2007) indicating that it may
be much smaller than previously assumed. In any case, the
rapid expansion of the calibrated CO2 tower network (cur-
rently over 30 towers in North America) should soon provide
significant additional data constraints to researchers perform-
ing atmospheric CO2 based inversions.

The spatial character of the annual NEE estimate has sev-
eral distinctive features. The most definitive feature of the
annual NEE estimate shown in Fig. 7 is the large sink lo-
cated over Texas, Louisiana, Arkansas, and portions of Ok-
lahoma. This sink is located largely between, and to the east
of, the ARM and WKWT sites in south central portion of
the domain. At first glance this may appear to be an arti-
fact of incorrect transport, poor boundary conditions, or in-
correct fossil fuel emissions specifications. However, sum-
ming the ARM NEE observations for the year provides a
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Fig. 11. Comparison of posterior fluxes of GPP, ER, and NEE with
Ameriflux Level 4 flux tower data for ARM Site in OK. Pay partic-
ular attention to the fact that they-axes are different scales.

sink estimate of approximately 275 g/m2, similar to the es-
timates the inversion produces to the south of the ARM site
(Fig. 7). A likely hypothesis for this sink is the lateral export
of crops, primarily winter wheat that draws most of its car-
bon from the atmosphere in the spring and then is harvested
and exported in early summer. The WKWT tower concentra-
tions have proven to be somewhat difficult to model given a
number of factors. CO2 observations at the top of the tower
did not appear to be well mixed until well after 12 p.m. LT.
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Additionally, the tower is located relatively closely to both
the model boundary and the ocean and is in close proxim-
ity to fossil fuel sources of major metropolitan areas and oil
refining facilities near Houston and Galveston.

The aforementioned sink also extends to the east and
northeast of the ARM tower. This is an area of significant
crop production, with corn and soybeans being grown exten-
sively in the northern portions while soybeans, rice, and other
crops are grown to the south in the Arkansas/Mississippi re-
gion. This area is also covered by heavily managed forest
regions, which produce large annual harvests of wood pri-
marily for paper pulp. These managed forests are largely
composed of very young productive loblolly pine trees pro-
viding a major source of carbon sequestration. This area is
known for quite variable precipitation patterns and it would
seem to reasonable to assume that young productive forests
in this area would be very productive under the unusually wet
and cool conditions of 2004.

It is interesting to note that the most intensely cultivated
portion of the Midwestern United States, centered on the
state of Iowa, shows little to no sink. This is an area typically
planted extensively with corn, which has been shown to be
an extremely effective consumer of atmospheric CO2. The
a priori estimate of NEE based upon SiB3 included a very
strong summer time sink of carbon over the Iowa region us-
ing a C4 photosynthesis scheme from Collatz et al. (1992).
Lokupitiya et al. (2009) illustrated that a phenology-based
model for the fluxes agricultural crops provided flux esti-
mates much closer to those of eddy covariance towers in the
region. Additionally, the area of crop production in the a pri-
ori model was very crude and did not match the spatial ex-
tent of crops, or the mix of different crop types, as given by
United States Department of Agricultural maps. The general
consensus, as mentioned by Peters et al. (2007), is that this
sink occurs over a relatively small intensively farmed area
of the country while the agricultural products produced (the
effective sink) are distributed out uniformly over the coun-
try, effectively spreading out the associated respiration sig-
nal. Emerging research from the Mid-Continent Intensive
portion of the North American Carbon Program appears to
support this hypothesis to some extent (Tris West, personal
communication, 2009). Therefore, it is likely that the “miss-
ing” sink in this area can be attributed to a poor agricultural
crop prior in SiB3 and/or a lack of CO2 measurements in
the vicinity. Although the existence of a sink is widely sup-
ported by agricultural crop statistics, the strength of the sink
is currently unknown and its estimation is complicated by a
number of factors.

First, annual NEE estimates from the corn-planted
Bondville, IL Ameriflux site indicate a sink on the order
of 500–600 g/m2. Soybeans can be expected to provide
sinks of about half of this. Assuming steady state con-
ditions over several years, these types of sinks can be at-
tributed directly to the harvest. Approximately 20% of the
corn harvest and 35% of the soy harvest is exported overseas,

mostly for animal feed, while half of the corn and soy re-
tained in the United States is used to feed livestock domes-
tically (National Corn Growers Association website:http:
//www.ncga.com/files/pdf/2009WOC.pdf, Soy Stats, http://
www.soystats.com). Most of the carbon in this livestock
feed is then returned to the atmosphere as CO2 and CH4
at locations where it is consumed by livestock. Almost
70% of the feedlots in the United States are located in
just 3 states: Texas, Kansas, and Nebraska (http://www.
cattlenetwork.com). This may provide a partial explana-
tion for the lack of an agriculturally-induced sink over Ne-
braska and Kansas, states with very high crop production
and intense livestock operations, and the existence of sinks
over portions of Arkansas, Mississippi, Missouri and Illi-
nois, states with relatively high crop production but with
significantly less livestock operations. A rapidly evolving
ethanol industry in the area further complicates the pic-
ture. Currently, this is an area of intense research (http:
//www.nacarbon.org/nacp/mci.html)and one may expect a
much more complete picture to emerge concerning the car-
bon balance of the Midwest United States within a few years.
An important point to keep in mind is that the addition of a
carbon sink in the Midwest United States would likely be
correlated with weakened sinks (or increased respiration) in
other areas of the domain in order to constrain the annual
domain wide source/sink estimate.

Forested regions in the northwestern United States and
boreal forests of Canada show slight sinks. However, vari-
ability estimates surrounding these sink estimates are typ-
ically much smaller than the variability estimates of simi-
lar sink magnitudes in the Midwest or southeastern United
States showing relatively more confidence in the sink de-
spite the lack of proximity to the observing towers. The sink
estimate in the northwestern United States is not surprising
since the northwestern coastal mountains of California, Ore-
gon and Washington have been intensely managed over the
last 50 years and are expected to provide a sink of carbon
for many decades into the future (Alig et al., 2006). The es-
timate for the boreal forest regions appears much harder to
objectively evaluate. Most studies have indicated that Cana-
dian ecosystems should currently be a weak sink, although
the projection of this weak sink into the future is highly un-
certain. The inversion results show a fairly carbon neutral
Canada on average, but shows the boreal forests of central
Canada and the boreal and coastal forests of western Canada
as slight sinks while the agricultural plains of Canada and
the forests of eastern Canada provide slight sources. It is in-
teresting to note that areas to the south of the two Canadian
towers show an annual source of carbon in an area just to the
east of large expansive forest ecosystems of British Columbia
that have recently experienced unprecedented bark beetle in-
vasions and tree mortality. It is important to note that for-
est fires were not included in the SiB3 domain run for the
regional inversion. Average carbon emissions from Cana-
dian forest fires were estimated at 27±6 Tg/yr (Amiro et al.,
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2001), a non-trivial amount that could increase the strength
of the boreal forest sink predicted by the inversion.

4 Conclusions

GPP, ER, and NEE flux corrections implied by this in-
version provide posterior annual NEE estimates similar to
those provided by a number of independently derived mod-
els including CASA (via CarbonTracker optimized) and the
MODIS 17 GPP product. NEE estimates for the entire do-
main appear on the low side of estimates derived from global
models, which is understandable given the lack of constraint
on some key regions of high annual GPP, and hence poten-
tially high annual NEE. This was corroborated by a compar-
ison to INTEX aircraft data which shows the existence of
a deficit in GPP over the southeast which would, when all
other things are considered equal, inflate the domain-wide
sink closer to levels estimated from global models such as
CarbonTracker. Results are relatively sensitive to a number
of parameters in the inversion setup, which is also to be ex-
pected with an inversion constrained by such a sparse ob-
serving network. Using a temporally uniform boundary con-
dition seems to produce a very unrealistic annual sink on the
order of 0.38 Pg per year, supporting the notion that regional
inversions require realistic boundary inflow of CO2. How-
ever, much to our surprise, we find that two completely in-
dependent boundary inflow estimates provide similar results
with the main difference being an approximately 30% dif-
ference in magnitude. This leads us to believe that, while
probably not preferable to optimized global CO2 fields, the
inclusion of annual NEE balanced models (such as SiB3) in
global models used to provide boundary inflow estimation
does not significantly damage inversions based upon it.

In the course of trying to improve NEE estimates, we were
able to find that the inversion was able to provide some de-
gree of correction to the individual summands of NEE, ER
and GPP, which are generally highly correlated at many dif-
ferent scales in time and space. Considering that SiB3 cur-
rently calculates ER as a relatively simple function of soil
moisture and temperature such that annual ER equals an-
nual GPP, the significant adjustment inferred upon GPP may
prove to be valuable estimation of other quantities of inter-
est in the biosphere. For example, while photosynthesizing,
plants must generally release water to compensate, meaning
that artificially high GPP may infer artificially high water ex-
change with the atmosphere and possibly associated latent
heat fluxes.

The agricultural Midwestern United States appears to play
a large role in the inversion results, providing a large sink.
However, the sink does not correlate exactly with crop pro-
ductivity, when compared to crop production maps from
the United States Department of Agriculture, and several
states with significant crop production such as Nebraska,
Kansas, and Iowa, appear to be in approximate annual carbon

balance. While the magnitude of this difference between
carbon neutral states with crops and carbon sink states with
crops is likely influenced by the lack of data in the inversion
and the general unconstrained nature of the solution at fine
scales, the discrimination between them seems likely to stay.
One hypothesis proposed is the lateral movement of crops
which has been shown to be a major portion of the carbon
budget globally (Ciais et al., 2007). The main crops of in-
terest in the domain are wheat, soy and corn. Soy and corn
are grown across large expanses of the north-central Mid-
west and are primarily used to feed livestock. These livestock
are typically fed in feedlots in the states of Iowa, Colorado,
Nebraska, Kansas, and Texas, generally located to the west
and south of the areas of growth and harvest. The end re-
sult would be that eastern states within the Midwest would
be a sink because of the near complete export of crops grown
there. However, states in the western portion of the Midwest
would receive the majority of these crops where they would
be fed to cattle and other animals, returned to the atmosphere
as CO2 and CH4 and largely balance any local sinks due to
crop production.

Technical considerations concerning the inversion could
also affect these results. In particular, a large amount of
missing data for the WKWT (Moody, TX) tower leaves the
southern boundary inflow unconstrained beyond the normal
PCTM inflow. This could result in the inflation of an Okla-
homa/Texas sink to account for a positive bias in the inflow
at the southern boundary, particularly after 1 July 2004 when
the Midwest receives its heaviest influence from the Gulf of
Mexico. The WLEF tower was also missing most of its ob-
servations for June, a time of intense drawdown for croplands
to the south of the site.

In 2004, the southern states of Texas, Oklahoma, Kansas,
Louisiana, Arkansas, and Mississippi had an extremely wet
summer, potentially mitigating some degree of drought and
providing an increase in GPP for the region which includes
managed forests, a large percentage of the United States’ ex-
ported wheat crop, and soybeans and other crops along the
lower Mississippi river valley. Additional research is needed
to determine if any of these could represent a plausible hy-
pothesis that would result in the net carbon neutrality of
large crop growing states in the western portions of the Great
Plains and the expansive southern and Mississippi river val-
ley sink predicted by the inversion.
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ABSTRACT
Seasonality and interannual variability in North American photosynthetic activity reflect potential patterns of climate
variability. We simulate 24 yr (1983–2006) and evaluate regional and seasonal contribution to annual mean gross
primary productivity (GPP) as well as its interannual variability. The highest productivity occurs in Mexico, the
southeast United States and the Pacific Northwest. Annual variability is largest in tropical Mexico, the desert Southwest
and the Midwestern corridor. We find that no single region or season consistently determines continental annual GPP
anomaly. GPP variability is dependent upon soil moisture availability in low- and mid-latitudes, and temperature in the
north. Soil moisture is a better predictor than precipitation as it integrates precipitation events temporally. The springtime
anomaly is the most frequent seasonal contributor to the annual GPP variability. No climate mode (i.e. ENSO, NAM)
can be associated with annual or seasonal variability over the entire continent. We define a region extending from the
Northeast United States through the midwest and into the southwestern United States and northern Mexico that explains
a significant fraction of the variability in springtime GPP. We cannot correlate this region to a single mechanism (i.e.
temperature, precipitation or soil moisture) or mode of climate variability.

1. Introduction

Global atmospheric CO2 concentrations have been increasing
over the past 250 yr in response to anthropogenic sources in
the form of human burning of fossil fuel and land cover change
(Keeling et al., 1995). The net increase in CO2 concentration
represents the residual CO2 from the anthropogenic contribution
and large exchange of CO2 between the atmosphere and surface
(oceans and land). It has been shown that on an annual basis,
only about 50% of the CO2 emitted by fossil fuel burning and
land cover change resides in the atmosphere; about half is taken
up by the oceans and terrestrial biosphere (Oeschger et al., 1975;
Tans et al., 1990; IPCC, 2007).

The annual atmospheric CO2 increase is not linear, but has
variability determined by seasonality and the spatial configu-
ration of the continents and oceans (Tans et al., 1990). North-
ern hemisphere CO2 concentration is lowest during the Boreal
summer, when biospheric uptake is large. In winter when veg-
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etation is dormant, northern hemisphere CO2 concentration is
higher. A similar signal, with smaller magnitude due to smaller
land coverage, is seen in the southern hemisphere. There is also
interannual variability in the magnitude of the CO2 increase.
For example, volcanic eruptions have been shown to attenuate
the rate of atmospheric CO2 increase (Roderick et al., 2001),
presumably a biospheric response to increased diffuse light
(Gu et al., 2002; Niyogi et al., 2004) due to increased aerosol
loading, or alternatively, a decrease in ecosystem respiration due
to decreased temperature.

Increased greenhouse gas concentration in the atmosphere
is predicted to modify the radiative forcing of the atmosphere
(Cox et al., 2000; IPCC, 2007) which will result in changes to
the meteorological forcing at the surface. Changes in surface
behaviour will modify the partitioning of energy flux returned
to the atmosphere, as well as imposing further changes to the
radiative forcing due to changes in surface carbon flux. The
atmosphere and terrestrial biosphere are tightly coupled with
respect to exchange of energy, mass and momentum; predictions
of future climate are critically dependent upon our understanding
of processes operating under present conditions.

It is tempting to correlate atmosphere–biosphere carbon flux
with climate indexes such as the Northern Annular Mode [NAM;
here considered synonymous with the North Atlantic Oscillation
(NAO)] or El-Niño/Southern Oscillation (ENSO) as a way to link
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regional carbon flux to large-scale climate dynamics. Demon-
strable causal links between modes of climate variability and
ecophysiological behaviour may provide insight into future cli-
mate if these modes exhibit secular trends. Russell and Wallace
(2004) showed a correlation between NAM and rate of increase
of global CO2 concentration. In this case, the decreased rate of
CO2 growth was tied to greenness as measured by normalized
difference vegetation index (NDVI) over the Eurasian continent,
in the form in increased growing season length due to stronger
warm onshore flow during the positive phase of the NAM. This
finding was consistent with that of Schaefer et al. (2002), who
also found that interannual variability in tropical net ecosystem
exchange (NEE) of carbon was correlated to ENSO, as a re-
sponse to changes in precipitation patterns. Surface carbon flux
feeds back into atmospheric circulation and climate. Identifying
strong mechanistic feedbacks, while not completely ‘closing the
loop’ between surface and atmosphere, will strengthen scientific
underpinnings for predictions of future climate.

To date, most studies have focused on the Northern Hemi-
sphere, due to the large land fraction. However, with the excep-
tion of the aforementioned link between Eurasian carbon flux
and the NAM, strong coupling between the terrestrial biosphere
and atmosphere has defied explanation. In particular, studies
have not shown consistent results in North America (NA). Zhou
et al. (2001) looked at 19 yr of NDVI data and found a consis-
tent response in Eurasia, both in greenness and length of grow-
ing season, but a more ‘fragmented’ situation in NA. Buermann
et al. (2003) correlated greenness, temperature/precipitation and
NAM/ENSO using meteorological and NDVI data for years
1982–1998, and corroborated the strong link between vegeta-
tion and warm onshore flow in Eurasia during the positive phase
of the NAM. Again, the results for NA were not as coherent,
suggesting more complex interactions between meteorological
forcing and surface processes.

A strong causal link between the NAM and carbon up-
take has been found in Eurasia, while determination of North
American ecophysiology and the forcing mechanisms that de-
termine it have been more ambiguous. In this paper, we will focus
on gross primary productivity (GPP) over the North American
continent, by evaluating 24 yr of model simulations. By taking
a bottom-up approach, we hope to gain insight into one aspect
of ecosystem behaviour that may inform our understanding of
North American biophysics and carbon dynamics. The goal of
this study is multiple: Is it possible to partition the continent
into regions that are dominant in terms of explaining large-scale
interannual GPP variability? Are there patterns in temporal be-
haviour that we can identify? Can we describe regions in NA
that have identifiable reliance on particular atmospheric drivers
of GPP? For example, can we identify regions where an early
spring is indicative of an annual increase in GPP, or regions
where anomalously high midsummer precipitation results in a
large positive excursion in annual GPP? Ultimately, we will at-
tempt to correlate North American GPP variability to modes of

climate variability such as NAM and ENSO. Although multiple
modes of teleconnection have been identified, it has been pro-
posed (Quadrelli and Wallace, 2004) that most, if not all of these
modes represent a linear combination of these two most dom-
inant modes. Rather than compare ecosystem behaviour with
many climate modes, we prefer to start with a conservative anal-
ysis. With a model we can isolate biospheric uptake of carbon
from efflux (respiration or anthropogenic sources) and atmo-
spheric transport, and provide a basic description of biospheric
response to climate dynamic processes with spatial and tem-
poral resolution higher than the continental/annual scale often
reported in inversion studies (i.e. Gurney et al., 2002, 2008;
Rödenbeck et al., 2003; Baker et al., 2006).

This paper is organized as follows: Section 2 gives a model
synopsis and reviews previous results, as well as giving an
overview of the statistical techniques used in the analysis. Anal-
ysis of NA GPP is contained in Section 3. This encompasses
mean behaviour, regional decomposition and statistical evalua-
tion. Summary and conclusions are given in Section 4.

2. Methods

2.1. Model description

The simple biosphere model (SiB) is a land-surface parameteri-
zation scheme originally used to simulate biophysical processes
in climate models (Sellers et al., 1986), but later adapted to in-
clude ecosystem metabolism (Denning et al., 1996; Sellers et al.,
1996a). SiB is a model that is useful to meteorologists for its
ability to simulate exchanges of mass, energy and momentum
between the atmosphere and terrestrial biosphere, and useful to
ecologists for its ability to do so in a process-based framework
that allows for simulation of explicit biophysical mechanisms.
The parameterization of photosynthetic carbon assimilation is
based on enzyme kinetics originally developed by Farquhar et al.
(1980), that are linked to stomatal conductance and thence to the
surface energy budget and atmospheric climate (Collatz et al.,
1991, 1992; Sellers et al., 1996a; Randall et al., 1996).

The soil representation is similar to that of CLM (Dai et al.,
2003), with 10 soil layers and soil column depth of 10 meters.
Root distribution follows Jackson et al. (1996). SiB has been
updated to include prognostic calculation of temperature, mois-
ture and trace gases in the canopy air space (Baker et al., 2003;
Vidale and Stöckli, 2003). We refer to this version of the code
as SiB3.

Model photosynthesis rate is tightly coupled to total latent
heat flux through transpirational losses of moisture through sto-
mates. Photosynthesis is calculated as the minimum of rate-
limitation by light, enzyme kinetics, and electron transport
(Collatz et al., 1991; Sellers et al., 1992). Photosynthesis is
further scaled downward from an optimum rate by limitation
imposed by temperature, relative humidity and moisture avail-
ability in the soil (Sellers et al., 1992). Leaf-level temperature,
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humidity and internal CO2 concentration are coupled via the
Ball–Berry process (Ball et al., 1987) and solved simultaneously.
Moisture availability, defined by the combination of root den-
sity and soil water concentration in individual model soil layers,
imposes a fundamental constraint on photosynthesis and hence
evaporation. Commonly, models have defined water availability
in terms of soil depth or root density alone, which is unrealistic
when compared to actual plant behaviour. We find that coupling
root and reservoir characteristics (Baker et al., 2008) provides a
more realistic simulation framework.

2.2. Model runs

For this analysis, we ran a global simulation of SiB on a 1 × 1
degree cartesian grid. Vegetation type is determined by maps as
described in DeFries and Townshend (1994), and soil charac-
ter is specified by IGBP (Global Soil Data Task Group, 2000).
In this simulation, SiB3 uses a 10-min timestep forced with 6-
hourly regridded meteorological analysis products from the Na-
tional Centers for Environmental Prediction (NCEP Reanalysis-
2; Kalnay et al., 1996; Kanamitsu et al., 2002) interpolated to
the model timestep for the years 1983–2006. SiB3 ingests tem-
perature, pressure, precipitation, wind and radiation as forcing
variables. Vegetation phenology is provided by the GIMMSg
NDVI product (Brown et al., 2004; Tucker et al., 2005; Pinzon
et al., 2006) which is used to calculate Leaf Area Index (LAI)
and fraction of Photosynthetically Active Radiation absorbed
(fPAR) following Sellers et al. (1996b).

Reanalysis products such as NCEP have known biases in pre-
cipitation (i.e. Costa and Foley, 1998) and other variables (Zhao
and Running, 2006; Zhang et al., 2007a). As precipitation can
be expected to have considerable influence on photosynthetic
processes, we scale the NCEP precipitation to a data set that
incorporates satellite and surface observations, in this case the
Global Precipitation Climatology Project (GPCP; Adler et al.,
2003). Using monthly precipitation values from GPCP, we scale
the NCEP precipitation for consistency. We do not create pre-
cipitation events, although we may remove precipitation if the
GPCP product indicates no precipitation at a location for a given
month.

The model was initialized with saturated soil, and the entire
24 yr period (1983–2006) was simulated twice as a spinup, with
the model re-initialized with ending (31 December 2006) model
state at 1 January 1983. Ecosystem respiration was scaled to
obtain annual carbon balance following Denning et al. (1996).
Model diagnostics were output as monthly averages on the global
grid, and subsampled for NA.

2.3. Model validation

Before evaluating model results for detailed analysis of ecosys-
tem response to meteorological variability for NA, we wish to
demonstrate a baseline of model performance. Continental-scale

observations of surface flux do not exist so we compare SiB re-
sults with a variety of other sources as a means of establishing
confidence in model output. We can appraise SiB behaviour
when compared against leaf-level measurements, against obser-
vations of latent and sensible heat and carbon flux as observed
by eddy covariance observation towers and against fluxes in-
verted from flask measurements and atmospheric transport to
demonstrate model competence. These comparisons are not the
focus of this paper, but can provide a foundation for trust in
model simulation of less observable quantities such as regional
ecophysiological variability. If we can demonstrate model skill
at multiple scales, then inferences made about regional-scale
ecophysiology will be more robust. Although the emphasis in
this paper is on GPP, there are no direct measurements of fun-
damental photosynthetic uptake at either the canopy or regional
scale. However, SiB is a ‘third generation’ surface scheme (Sell-
ers et al., 1997) that contains self-consistency in the equation set
that links radiative transfer, evaporation and ecophysiology. In-
ternal consistency and multiple constraints make it possible to
extend a degree of confidence to modelled GPP by comparing
model output to observed quantities. In this regard, SiB has a
demonstrable ability to simulate landsurface processes.

SiB was developed with the intended use as a lower boundary
for Atmospheric General Circulation Models (AGCMs). Sato
et al. (1989) describe implementation of SiB into an AGCM,
and show that surface behaviour over diurnal to seasonal scales
are realistic in the fully coupled model. Randall et al. (1996)
describe the ‘greening’ of the Colorado State University AGCM
when SiB phenological behaviour is upgraded from tabular val-
ues to those derived from satellite NDVI observations. Non-
coupled [offline, driven by European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis products] global SiB
GPP is shown to be consistent with accepted values in Zhang
et al. (1996). SiB has been utilized as a lower boundary for the
Regional Atmospheric Modeling System (RAMS; Cotton et al.,
2003; Pielke et al., 1992) as well (Denning et al., 2003; Nicholls
et al., 2004; Wang et al., 2007; Corbin et al., 2008). Denning
et al. (2003) and Nicholls et al. (2004) describe how biological
processes couple with meteorological process to define the re-
gional carbon budget over Wisconsin, USA. Wang et al. (2007)
and Corbin et al. (2008) extend the analysis to the central North
American continent.

From its inception in 1986, SiB (versions 1, 2 and 3) has
also been evaluated by confronting the model with local obser-
vations. Sellers and Dorman (1986) compare modelled energy
flux, stomatal resistance, albedo and leaf water potential to ob-
servations over periods from several days to 1 month at multiple
sites. Colello et al. (1998) confirm that SiB can reproduce diur-
nal cycles of energy, moisture and carbon flux at a grassland over
periods of several days using FIFE data, and Hanan et al. (2005)
show that incorporation of heterogeneous C3/C4 physiology
maps into SiB improve modelled annual cycles and interannual
variability at a grassland site in Oklahoma. Effective radiative
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temperature, soil wetness and energy fluxes at a Tibetan prairie
are successfully reproduced during growing season months in
the study of Gao et al. (2004). Baker et al. (2003) and Schaefer
et al. (2008) compare SiB energy and carbon fluxes to eddy co-
variance observations taken at mid-latitude forest sites: diurnal,
monthly and interannual variability are captured by the model,
although SiB is biased towards slightly high Bowen ratio when
canopy cover is very dense. The mechanisms that control sea-
sonal variability at a site in tropical Amazonia are incorporated
into SiB by Baker et al. (2008), with the result that previously
out-of-phase simulated annual flux cycles at this site are brought
into agreement with observations.

Regional carbon exchange is not a directly measurable quan-
tity. Flask observations of CO2 are inverted with transport data
by Gurney et al. (2008) to obtain estimates of carbon flux for the
globe when partitioned into 22 oceanic and terrestrial regions.
Figure 1 shows SiB NEE for years 1984–2004 (black line, sym-
bols) compared to the results of Gurney et al. (2008) for Boreal
and Temperate NA. There are eight global ‘networks’ for the
inversion data, as changing numbers of flask locations makes a
single estimate unreasonable. It is important to note that there is
frequently disagreement between the inverted fluxes from dif-
ferent networks (i.e. 1997–1998 in Boreal NA; 1988–1989 and
1993–1996 in Temperate NA), underscoring the fact that abso-
lute measurement of regional carbon flux does not exist. When
our modelled flux is compared against the inversion results, SiB
captures most, but not all, of the major variability seen in the
inversion results. In Boreal NA, the efflux (positive values) event
of 1990–1992 is well represented by SiB, as is the uptake event
of 1997–1998, although that event is only captured by two of
the inversion networks. The relative maximum of 2001–2002
is consistent between SiB and the inversion results, although

the SiB peak is higher in magnitude. In temperate NA, general
trends are consistent between SiB and inversion results. Lo-
cal minima in 1991–1992 and 1996–1998 are consistent, as are
maxima in 1994, 2000 and 2002. It is important to reiterate that
inversion results are not conclusive, as represented by the dis-
agreement between different inversion networks. Flask coverage
is sparse (especially in Boreal NA), and transport was interan-
nually uniform in the inversion exercise, which can be a cause
for ambiguity (Gurney et al., 2008). It is crucial to acknowledge
that there is uncertainty in regional flux estimates from either
models (such as SiB) or inversions. However, we believe that
SiB fluxes, when compared to inversion products, are reason-
able and demonstrate an ability to capture the larger features of
ecosystem variability across broad spatial domains. This ability
is critical to the results we present later in this paper.

2.4. Statistical tools

A model is merely a tool to assist in our understanding of a
particular system, in this case the spatiotemporal behaviour of
the terrestrial biosphere. We acknowledge that uncertainty exists
in model output due to parameterizations, subgrid scale hetero-
geneity and reanalyzing meteorological observations into forc-
ing data sets. For these reasons, we keep our statistical toolbox
small. With the inherent confidence bounds in the model sys-
tem, we believe that relationships that cannot be seen with simple
tools may simply be an artefact of the mathematical manipula-
tions being applied. Therefore, we attempt to limit statistical
tools to linear regression, explained variance and correlation co-
efficient. To test for significance, we use a two-ended Student’s
t-test at the 90% level. We take a conservative approach and
assume that each year comprises an independent sample, giving

Fig. 1. Modelled net ecosystem exchange
(black line, symbols) superimposed on NEE
estimated by inversion of eight flask
networks (Gurney et al., 2008). Modelled
flux has 13-month trapezoidal running mean
applied. Both model and flask-based time
series have been standardized, so units are
relative.
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us 24 samples in the modelling period (for a two-tailed test we
subtract two, giving 22 degrees of freedom). At this level, the
probability that a particular value is the result of random chance
requires a t-statistic value of t < 1.72.

We also use singular value decomposition to obtain the prin-
ciple component (PC) time series, which we can regress GPP
and meteorological anomalies onto to determine if there are
patterns that explain large fractions of continental-scale vari-
ability. Eigenvalues are tested for significance following North
et al. (1982). We found that the significance of the eigenvalues
was critically dependent upon the degrees of freedom specified,
which we calculated (following Bretherton et al., 1998) as

N∗ = 1 − r2(!t)
1 + r2(!t)

, (1)

where N∗ is the degrees of freedom, r2 is the lag-one autocor-
relation and !t is the timestep of the data.

Intuitively, we can think of the spatiotemporal persistence of
anomalies in GPP as the dependence of an anomaly upon the
previous month, season or year’s environmental conditions. Plots
of lag-one autocorrelation of monthly GPP (not shown) show a
spatial variability in this dependence: In the northeast, in an
area bounded approximately by 50◦ north latitude and 90◦ west
longitude, there is very little variability explained by the lag-one
autocorrelation, less than 20% on even a monthly basis. In the
more arid regions of the continent (desert southwest, arctic), the
lag-one autocorrelation on a monthly basis is much higher. When
annual anomalies are used, the region of spatial independence
becomes larger still, with only the desert southwest suggesting
that GPP in a given year is dependent upon conditions in the
previous year. For this reason, we continue to use 22 as our
degrees of freedom, which is not only smaller than the area-

mean value found using eq. (1), but consistent with our theme
of using conservative statistics throughout the analysis.

3. Analysis

3.1. Mean North American GPP

For this analysis, we define NA as the region northward of 15◦

north latitude between 50◦ and 170◦ west longitude. The spatial
distribution of simulated annual mean GPP is shown in Fig. 2
(panel a). Maximum uptake of CO2 is in the tropical forest
of southern Mexico, over 3.5 kg m−2 yr−1 in some areas. The
southeastern United States and Pacific Northwest are the next
largest in terms of annual assimilation of carbon, at approxi-
mately 2 kg m−2 yr−1. The desert southwest and arctic tundra
regions show smallest annual GPP, which is not unexpected
given the harshness of the climate and lack of biomass in these
regions.

The standard deviation of annual GPP (Fig. 2, panel b) shows
that the tropical forest in southern Mexico has large interan-
nual variability, but the productive regions in the southeast
and Pacific Northwest do not. GPP in the Monsoon region in
Mexico is highly variable, as is the California coast south of
San Francisco Bay. There is also a belt of relatively large vari-
ability centred on 100◦ west longitude, from Southern Texas
to the prairie provinces of Canada. This midwestern band of
large standard deviation deserves attention because it exists as a
natural boundary between the productive east and the relatively
dry intermountain west. This region encompasses the ‘dry line’
that often focuses severe weather, as well as the region effected
by the cold, fast-moving airmasses (‘Alberta Clippers’) that in-
trude into the mid-latitude United States from Canada. It is intu-
itive that this region will not only experience large variability in

Fig. 2. Panel a: Annual mean GPP, in kg carbon, for North America, as simulated by SiB3, years 1983–2006. Panel b: GPP standard deviation, in kg
carbon.
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ecosystem function, but that overall variability here has the po-
tential to impact continental-scale carbon characteristics.

The coefficient of variation (defined as the standard deviation
divided by the mean; not shown) for GPP is largest in the desert
southwest, and smallest in the local maxima GPP regions in the
southeast United States and Pacific Northwest, as well as in the
Boreal Forest of Canada. In general, large coefficient of variation
is found where mean annual GPP is low.

Any analysis of North American GPP must include consid-
eration of seasonality. In the extreme north, cold winters and
brief warm summers ensure that annual GPP is completed in
only a few months. For example, in Barrow AK there are only
3 months (June, July and August) that have mean monthly tem-
perature above 273 K, with mean annual temperature ampli-
tude of almost 50 K. As one moves south, temperature season-
ality is damped and mean annual temperature is larger. The
mean monthly temperature for locations such as Miami FL and
Mexico City is above freezing in all months, and the amplitude
of the annual cycle is 10 K or less. There are periodic cold air
intrusions southwards (more so in the SE United States than in
Mexico or Central America), but mean conditions are suitable
for photosynthetic activity throughout the year. Precipitation
seasonality plays a role as well, especially in the southern re-
gions where temperature is not as variable. Figure 3 (panel a)
shows the month where mean maximum GPP occurs, and Fig. 3
(panel b) shows the fraction of annual GPP that occurs during the
month of greatest activity. In the arctic, maximum monthly GPP
happens in July or August, and 1 month can comprise upwards
of 40% of the annual total. By contrast, in the southern United
States (with the exception of the southern Rockies), maximum
photosynthetic activity occurs in April or May, and no individ-
ual month contributes more than 15% to the annual total. In the
monsoon region of Mexico, maximum GPP occurs in August/

September, after seasonal rains have replenished moisture in the
soil.

3.2. North American GPP variability

Continents are commonly partitioned by vegetation type (i.e.
Peters et al., 2007) as a means to determine more detailed re-
lationships. In this study, we prefer a regional discretization,
based roughly on spatial coherence in the mean, standard de-
viation and coefficient of variability of GPP. These regions are
shown in Fig. 4, and while we did not explicitly establish cri-
teria to define continental subregions, these regions implicitly
incorporate natural delineations of mean annual GPP, standard
deviation and coefficient of variability, vegetation type, topog-
raphy and climatological variables such as annual mean pre-
cipitation and temperature. These regions are listed in Table 2,
along with the fraction of NA land area, fraction of mean an-
nual NA GPP occurring in the region and the ratio of GPP
fraction to land fraction. Several features of Table 1 are worth
noting.

• The SouthWest and SouthEast regions have identical area,
but the SouthEast region has over four times the fraction of mean
annual NA GPP that the SouthWest region does.

• Over half (54%) of the mean annual NA GPP occurs in
three regions: SouthEast, NorthEast and Mexico/CA. However,
the variability in the SouthEast and NorthEast regions is small
(Fig. 2, panel b), which may reduce the impact these regions
impose on continental-scale GPP anomaly.

• The MidWest region contributes around 12% to mean an-
nual NA GPP, but the relatively large standard deviation in annual
GPP for the region suggests that this region may play a larger
role in continental-scale behaviour.

Fig. 3. Panel a: Month of maximum GPP. Panel b: Fraction of annual GPP occurring during the month of maximum GPP.
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Fig. 4. Regional partition of North America.

Table 1. Ecophysiological subregions for the North American
continent

Subregion % area % GPP Ratio (GPP/area)

Mexico/Central America 6.4 15.7 2.45
SouthWest 8.8 4.3 0.49
SouthEast 8.8 18.0 2.05
NorthWest 9.6 8.1 0.84
NorthEast 13.4 20.3 1.51
MidWest 11.6 11.9 1.03
Boreal-East 7.6 2.8 0.37
Boreal-Central 15.6 7.8 0.50
Boreal-West 18.1 11.2 0.62

The annual anomaly in modelled GPP for 1983–2006 for the
entire continent is shown in Fig. 5, with the regional anomalies
superimposed. In this figure, the continental-scale anomaly is
plotted as the solid line and the regional anomalies are sorted
by magnitude, with smallest variation from the regional mean
plotted closest to the zero line; larger anomalies are plotted
further from the origin, demonstrating which regions contribute
the most to that year’s anomaly on the continental scale. In no
year do all regional anomalies have identical sign; both positive
and negative anomalies exist on a regional basis in all years.
In 4 years (1996, 2000, 2002, 2005), all regions save one have
similar sign. Interestingly, the southernmost region is the outlier
for each of these years. For years with small overall anomaly
(1990, 2001, 2004), there are relatively large, yet compensating,
regional excursions from the mean.

Variability about the mean NA GPP is not consistently de-
pendent on any single region. Of the nine regions, only east-
ern Boreal Canada (Boreal-East) and the Pacific Northwest
(NorthWest) are never the largest anomaly for a given year,
where all other regions contribute the largest anomaly to the
annual variability at least once. Several regions stand out due to
their frequent large excursions from the mean; Mexico/Central
America, MidWest and Central/Western Boreal regions. The
Boreal regions commonly exhibit similar sign (i.e. 1983, 1985,
1992) to the overall anomaly but not exclusively (2001, 2004)
suggesting that these adjoining regions may respond to different
forcing mechanisms that determine annual GPP variability.

The SouthWest is the largest anomaly three times; even though
the mean GPP is small there, the coefficient of variability is the
largest on the continent. The SouthWest can be an influence
for either positive or negative anomalies—it is not just that it
can contribute if it rains, although the largest contribution is
during the large El Niño event of the early 1980s. This region is
important for continental-scale carbon flux.

The continental-scale annual GPP anomaly is partitioned by
seasonal contribution in Fig. 6. On a seasonal basis, all seasons
except winter have at least 6 yr where that seasonal anomaly is
the same sign as the annual anomaly and is largest during the
year. Spring anomalies dominate the year the most (11 times)
with Summer contributing the most to the annual anomaly 7
yr, and Fall 6. The two largest anomalies during the year are
usually adjoining seasons (i.e. spring and summer, or summer
and fall), but not exclusively. It is not uncommon for the two
largest seasonal anomalies with the same sign to be opposing
seasons (i.e. 1985, 2005), nor is it uncommon for adjoining
seasons to have opposing signs (i.e. 1991, 2004) although in this
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Fig. 5. Regional contribution to annual North America GPP anomaly, in GT carbon, for years 1983–2006. Continental-scale variability is shown as
the solid black line, and regional contribution to the total is given by the coloured boxes. Smallest regional anomalies are plotted nearest the zero
line, and largest anomalies further from the x-axis.

Fig. 6. Seasonal contribution to annual North America GPP anomaly, in GT carbon, for years 1983–2006. Continental-scale variability is shown as
the solid black line, and seasonal contribution to the total is given by the coloured boxes. Smallest regional anomalies are plotted nearest the zero
line, and largest anomalies further from the x-axis.

case the magnitude of the anomaly is generally small and winter
is usually one of the seasons. For each season, the distribution
between positive and negative is fairly evenly distributed; both
positive and negative excursions from the mean are found in the
simulation record.

3.3. Correlation to physical mechanism

3.3.1. Annual GPP variability. Ultimately, we wish to link
ecophysiological behaviour to modes of climate variability, but
doing so directly requires a causal jump across the meteoro-

logical mechanisms that influence ecosystem behaviour. In this
section we make simple statistical comparisons of GPP to mete-
orological forcing such as temperature, radiation, and precipita-
tion. We also include a comparison to soil moisture availability,
as precipitation alone may neglect features of precipitation dis-
tribution that may be misleading. For example, a large precipita-
tion event will suggest a positive anomaly, but if a large fraction
of that precipitation is lost as runoff then the potential benefit
to vegetation will be lost. Furthermore, the effect of wintertime
precipitation anomalies may be attenuated or exacerbated by the
nature of the spring warmup. Using soil moisture as a diagnostic
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tool takes advantage of its integrative nature, which may not be
possible if precipitation alone is used.

We regress variability in annual GPP against variability in
annual precipitation, soil moisture availability, temperature, and
radiation. The fraction of GPP variability explained by the vari-
ous mechanisms is calculated along with a Pearson’s correlation
coefficient to help determine the nature of the relationship. Sig-
nificance is determined using a Student’s t-statistic, calculated
for 90% significance assuming 22 degrees of freedom (assuming
each year as an independent sample).

For the North American continent, we aggregate the results
and show the mechanism that explains the largest fraction in an-
nual GPP in Fig. 7 (panel a). Figure 7 (panel b) shows the amount
of variance explained by the mechanism that explains the most
variance. We plot the mechanisms as grid-boxes (not contoured)
because the classification used is discrete. Blank spots reflect
gridcells where no single mechanism is able to explain inter-
annual variability in GPP at the 90% significance level. Soil
moisture availability explains the most GPP variability for a
significant fraction of the continent, from Mexico and Central
America through the southern tier of the United States. The mid-
western United States and the southern boundary of the Canadian
Prairie provinces are responsive to soil moisture availability, as
is most of Alaska and parts of Arctic Canada. The fraction of
variance explained by soil moisture availability is largest in the
Yucatan Peninsula, northwest Mexico/Southwest United States
and the Colorado Plateau. In this region, variance explained can
exceed 95%. In the southern plains, variance explained is in the
20–40% range, while there is a local maximum in soil moisture
influence over the Dakotas and southern Manitoba of around
75%. In the arctic, the variance explained is lower, generally
between 20% and 40% (with small local maxima).

Temperature explains most of the GPP variability in the east-
central United States and over most of Canada. Temperature
influence in Canada is intuitive, as an early spring can be ex-
pected to lead to anomalously large GPP. However, the frac-
tion of variability explained by temperature is small everywhere
where temperature is the dominant mechanism, generally be-
tween 10% and 40%. Radiation variability explains the most
variance over small pockets in the Pacific Northwest and Ohio
River Valley. The fraction of GPP variability explained by radi-
ation is generally small.

3.3.2. Spring GPP variability. We identified spring as the
season that most frequently makes the largest contribution to
annual GPP variability (Fig. 6). We can repeat the analysis that
we performed on annual anomalies for springtime GPP, and in
addition to regressing springtime GPP onto springtime meteo-
rology, we can regress springtime GPP onto winter meteorology
to look for a lagged response.

When focus is isolated on spring, the intuitive result is borne
out from the statistical analysis: Spring GPP responds positively
to anomalously warm temperature across a large fraction of
NA. The largest response, in terms of fraction of spring GPP
variability explained by temperature variability, extends along
a band from New England, along the United States–Canada
border into the Pacific Northwest. There is a narrow strip through
central Mexico where 20–50% of the springtime GPP variability
is explained by temperature, yet in this region the relationship is
inverted-cooler spring enhances productivity. The annual pattern
shown previously (Fig. 5) in NW Mexico/SW United States
holds in the spring as well-increased soil moisture availability is
strongly correlated with enhanced GPP.

When we regress springtime GPP against winter meteoro-
logical variability, the same relationships seen during the same

Fig. 7. Panel a: Biophysical mechanism that explains the largest fraction of annual GPP variability, limited to significance at the 90% level.
Mechanisms are (1) Soil moisture availability, (2) Temperature and (3) Radiation. Blank spots occur where no single mechanism is significant at the
90% level. Panel b: Fraction of annual GPP variability explained by the dominant mechanism.
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season (spring/spring) regression hold, albeit with slightly dif-
ferent spatial structure. This is likely due to the fact that anoma-
lously large winter precipitation has an opportunity to be inte-
grated into the soil prior to springtime GPP onset for large areas
of the continent. When the seasonal lag is included into the anal-
ysis, anomalous precipitation in winter or spring is similar for
the purpose of statistical regression and the patterns we retrieve.
The positive temperature relationship to GPP is significant over
a much smaller area, centred on Northwestern Quebec.

3.4. Modes of climate variability

Ultimately, we wish to link modes of large-scale climate vari-
ability (MCV) such as ENSO or NAM to continental-scale pho-
tosynthetic behaviour. However, partitioning continental GPP
into regional or temporal components (Figs 5 and 6) does not
reveal consistent or coherent patterns, suggesting that ecosys-
tem linkage to large-scale climatic modes may be a difficult
prospect.

However, the lack of continental-scale coherence does not
preclude regional relationships between modes of climate vari-
ability and ecosystem function. To test this idea, we regress GPP
anomalies against the two main indices that measure modes of
climate variability: the Multivariate ENSO Index (MEI: Wolter
and Timlin, 1993; Wolter and Timlin, 1998), and the North-
ern Annular Mode (NAM; Thompson and Wallace, 2000). We
regress anomalies of GPP, temperature and precipitation against
these indices as a way to draw out mechanisms that influence
vegetation behaviour. As we did for meteorological mecha-
nisms, we calculate a Pearson’s correlation coefficient, and test
for significance using a two-tail Student’s t-statistic at the 90%
level.

The data may be dissected in several ways. Modes of climate
variability show power over multiple timescales (Rasmussen and
Carpenter, 1982; Barnston and Livezy, 1987; Enfield and Birkes,
1993; Hurrell, 1995), and many index values are only evaluated
during winter/spring months. We might expect to see a coupling
between annual GPP anomaly and annual MCV index in some
cases, and a higher-frequency response in others. We might also
expect to see a lag between the mechanism invoked by variability
of a climate index and environmental response. Furthermore,
we focus seasonal attention on the spring (MAM) and summer
(JJA) seasons, as these are the seasons with largest GPP and
variability, and thus the seasons most likely to influence annual
carbon uptake anomaly. Therefore, we conducted the following
regressions:

• Annual GPP anomaly onto annual index: Can we relate
annual GPP anomaly to low-frequency (annual) variability in a
climate index?

• Annual GPP anomaly onto winter, spring, or summer in-
dex: Does seasonal-scale variability in a climate index translate
to an annual anomaly in GPP?

• Spring GPP anomaly onto winter index, or summer GPP
onto spring index (lag-one seasonal comparison): Is there a delay
in atmospheric or ecosystem response to climatic forcing?

• Spring GPP anomaly onto spring index or summer onto
summer (lag-zero): Immediate ecosystem response to changes
in forcing invoked by index variability.

Results are summarized later; no obvious relationship be-
tween a single MCV and GPP variability emerged on the large-
scale, although there are multiple responses on the regional scale
between climate indices, GPP, and the mechanisms that influence
GPP that are intuitive and consistent with current knowledge of
manifestation of climate variability on meteorology.

3.4.1. Multivariate ENSO Index: MEI. For example, we have
shown a relationship between soil moisture availability and GPP
in the desert southwest (i.e. Fig. 7, panel a). There is a well-
known link between positive ENSO index and high winter pre-
cipitation in this region (Sheppard et al., 2002; Mauget, 2003),
although an inverse relationship is seen during the monsoon
season of the late summer (Higgins et al., 1999). Therefore, we
might expect a correlation between GPP and ENSO index here.
We do not see large areas of correlation between annual GPP and
annual MEI, but we do see a significant relationship in the desert
southwest and Pacific Northwest from winter through spring.
When spring (MAM) GPP is regressed against the winter MEI,
we see between 20% and 30% of the variability in the desert
southwest explained, and up to 45% of the GPP variability in
Washington, British Columbia and western Alberta explained.
This relationship is reinforced when spring GPP is regressed
against spring MEI. By summer, the influence in the southwest
has moved slightly northeast into the Colorado Plateau, and
the correlation in the Pacific Northwest is gone. In the desert
southwest, the ENSO influence is in the form of enhanced pre-
cipitation, and the positive correlation between MEI and GPP to
the north is due to warmer temperatures resulting in extended
growing season.

3.4.2. Northern annular mode. The characteristic frequency
of the NAM is much shorter than that of ENSO, so we may
expect that correlation between annual mean index and annual
mean GPP are non-existent. However, we do see a suppression of
GPP along the Canadian arctic coast between 100 and 120 west
longitude, although it explains less than 25% of the variability.
There is no statistical significance between NAM and tempera-
ture or precipitation in this region, so the exact mechanism by
which NAM influences GPP is not clear.

We see an influence on annual temperature anomaly by sea-
sonal NAM index. A high springtime NAM is associated with
positive annual temperature anomaly in a region from central
Alaska through the Yukon-NW Territories border, where the
NAM explains up to 30% of the temperature variability. Simi-
larly, a high summertime NAM can explain up to 40% of the vari-
ability in annual temperature over a sizable fraction of Wyoming
and eastern Montana. However, in neither of these regions do
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we see a correlation between GPP and either spring or summer
NAM. This suggests that other mechanisms (water availability,
relative humidity) play a larger role in regulating GPP in these
regions than temperature does.

One-season lagged comparison shows no significance when
spring GPP is compared to winter NAM. This is likely due to
low ecosystem activity in the region of influence (generally far
north latitudes) until later in the year. When we correlate summer
ecosystem activity to spring NAM index, we see that high NAM
is associated with suppressed GPP along the Canadian arctic
coast noted earlier.

When NAM is compared to same-season quantities, we see
an arc of anomalously high GPP along an arc from central
Alaska along the eastern slope of the Canadian Rockies to the
Canada–USA border. This GPP anomaly is associated with a
positive temperature anomaly, implying early warming and ex-
tension of growing season.

The net result is that no continental-scale relationship
emerges, with respect to temperature, precipitation or GPP. This
is consistent with the previously cited studies such as Zhou et al.
(2001) or Buermann et al. (2003). The extensive continental
dependence on soil moisture suggests that subtle interactions
between precipitation, temperature and radiation are responsi-
ble for large-scale GPP variability, and these interactions are

heterogeneous in space and time. We are not, at this time, able
to make predictions about NA ecophysiological behaviour based
on ENSO or NAM index.

3.5. EOF/PC analysis

To determine if coherent patterns exist for GPP variability on
annual and seasonal scales independent of reliance on physical
mechanism, we performed singular value decomposition (SVD)
analysis to obtain the PC time series for GPP anomalies. We
tested eigenvalues for significance following North et al. (1982).

On an annual basis, we found no significant pattern, nor did
one emerge for summertime GPP. However, the first eigenvalue
for springtime showed separation, suggesting that a spatially
consistent pattern of GPP variability exists for this season. The
GPP anomaly regressed upon the first PC time series is shown
in Fig. 8, and shows a spatially coherent region extending from
around 90◦ to 105◦ west longitude, bounded by the Rio Grande
in the south and extending into the Prairie Provinces of Canada
to the north. This region branches northeastward up the Ohio
River valley towards New England. There is also an associ-
ated region of coherence in the Monsoon region of Mexico and
the southwestern United States. This EOF implies that there is
a large region that behaves consistently, and explains most of

Fig. 8. First EOF of springtime GPP
variability. Contour intervals are 5g of
carbon. Inset shows separation of the
eigenvalues and fraction of variability
explained by each.
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Fig. 9. Regional contribution to springtime North America GPP anomaly, in GT carbon for years 1983–2006. Continental-scale variability is shown
as the solid black line, and regional contribution to the total is given by the coloured boxes. Smallest regional anomalies are plotted nearest the zero
line, and largest anomalies further from the x-axis.

the variability in springtime GPP. If we look at the subregions
that describe this region (Fig. 4), it falls mainly in the Mid-
Western, NorthEast and Boreal-Central regions. The spring GPP
anomalies, broken out by subregion contribution, are shown in
Fig. 9, and it is easily seen that the three aforementioned regions
play a large role in determining the seasonal variability. The
largest spring anomaly (of the same sign as the continental-scale
seasonal anomaly) is from the MidWest, NorthEast or Boreal-
Central region in 16 of 24 yr, one of the top two in 20 of 24 yr,
and at least one of these regions is in the top three anomalies
in 23 of 24 yr. In 4 yr (1983, 1987, 1997, 2002), these three
regions all have the same sign on their anomaly, and are the top
three anomalies in terms of the magnitude of GPP variability
that determines continental-scale GPP variability in spring.

Temperature is the driving mechanism for a large portion
of the springtime variability in this region. Generally, an early
spring results in increased GPP. However, there are also portions
of Texas and the Dakotas where, even in spring, the available
soil moisture explains most of the variability when compared
with other mechanisms.

Springtime GPP variability, when correlated with modes of
climate variability, show no strong relationships over the re-
gion shown in Fig. 8 when compared concurrently or with a
1-season lag. ENSO index is positively correlated with warmer
temperatures along the southern edge of the Great Lakes and in
Alaska/Yukon when springtime temperature is compared with
winter index. The northern area moves eastward and expands
in size when spring temperature is correlated to spring ENSO
index. The correlation to GPP is smaller, partially due to low
spring GPP in the north. There is virtually no correlation be-
tween the NAM and either temperature or GPP at a lag of one

season (spring GPP/temperature correlated with winter NAM
index). When concurrent NAM index and temperature/GPP are
compared in spring, there is a large band extending from Alaska
through the Prairie Provinces where temperature is positively
correlated to the NAM. The GPP correlation is strongest for a
region extending from Oklahoma through Louisiana. Therefore,
although there are portions of the pattern shown in Fig. 8 where
GPP anomaly can be tied a particular climate index, no one index
or mechanism explains the region-wide behaviour.

3.6. Comparison with observations

Rigorous comparison of our results with observational data is
not possible, but we can compare our results from Fig. 7 with
studies from the literature. In general, we find that grasslands
are most sensitive to soil moisture as a mechanism that influ-
ences GPP. This is consistent with the results of Flanagan et al.
(2002), who looked at 3 yr of meteorological and eddy covari-
ance flux data from Lethbridge (49◦N/112◦W). Meyers (2001)
also show strong dependence between soil moisture and GPP in
an Oklahoma grassland (35◦N/98◦W) when evaluating multiple
years of observations. Kjelgaard et al. (2008) report a strong
correlation between precipitation and GPP in the Texas ‘Hill
Country’ of the southern plains (30–32◦N/100–105◦W), which
is inconsistent with our findings. However, in this case the lo-
cally shallow soil (<50 cm) may reduce the importance of soil
moisture storage. SiB uses globally uniform soil depth, and so
cannot reproduce this result at this time. Zhang et al. (2007b)
compared a piecewise regression model of GPP to flux tower
data and to GPP modelled using MODIS over the high plains
region of the United States. Although soil moisture was not a
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component of the model, the authors allude to the importance of
moisture holding capacity to GPP in the region.

We find that GPP variability in the northeastern quadrant of
NA is principally dependent on temperature. Conceptually, this
can be thought of as a lengthening of the growing season corre-
lating to high seasonal or annual GPP. This result is consistent
with that of Richardson et al. (2009), who found growing season
length was a significant driver of GPP variability at two flux
tower sites in the northeastern United States. Urbanski et al.
(2007) found temperature to be a driver of GPP variability at
Harvard Forest in Massachusetts. During the 13 yr of their study,
the largest annual GPP occurred during a year with extremely
early canopy development. The year with the smallest annual
GPP was also a year with an early canopy. However, in this
case low temperature and insolation in early summer acted to
suppress GPP. They found that soil moisture was unrelated to
seasonal or annual GPP variability, except during the late sum-
mer. This suggests that temperature, while an important driver
of GPP variability, is not the sole influencing factor. This is
supported by Fig. 7, which shows that while temperature is the
dominant driver of GPP variability the fraction of variability
explained is relatively low.

Three different-aged Douglas-fir stands on Vancouver Island
(British Columbia, Canada) were studied by Jassal et al. (2009).
They found that summertime GPP was water limited. However,
they also noted that winter season GPP is energy (or light) lim-
ited, and the largest annual GPP occurred during the warmest
year of their observational record. This variability in the Pacific
Northwest is not wholly inconsistent with our results. We find
a heterogeneous situation in the region (Fig. 7, panel a), with
pixels showing highest GPP dependence on soil moisture, tem-
perature and radiation in close proximity to each other. These
results, although not conclusive, indicate a general correspon-
dence between several observational studies and our results as
indicated in Fig. 7. We have not found observational studies that
directly contradict our analysis of the mechanisms that drive
variability in GPP.

4. Summary and Conclusions

As global atmospheric CO2 levels rise, the exchange between
the atmosphere and terrestrial biosphere is important for two
reasons: First, around half of the anthropogenic CO2 currently
emitted is taken up by the oceans and land (the ‘missing sink’),
and secondly, vegetation behaviour plays an important role in de-
termining the exchange of energy, mass and momentum between
the atmosphere and land surface. Understanding of present-day
ecophysiological behaviour is critical to predictions of future
climate.

There has been an observed increase in the positive phase
of the NAM (or NAO; Hurrell, 1995; Hurrell et al., 2001) in
recent years, which has been positively correlated to increased
carbon uptake in Eurasia (Schaefer et al., 2002; Buermann et al.,

2003; Russell and Wallace, 2004). The causal links are simple
to follow. A tightening of the polar vortex results in anomalous
intrusions of warm maritime air onto the continent, resulting in
an extension of growing season due to warmer spring and/or fall.
If we have a scientific basis for predicting a continued persistence
in the positive phase of the NAM, we can make predictions of
ecophysiological response with considerable confidence.

In NA, the situation is much less clear. We have not been
able to find a consistent, continent-wide vegetation response to
either ENSO or NAM, and this result is consistent with previ-
ous work (i.e. Zhou et al., 2001; Schaefer et al., 2002; Russell
and Wallace, 2004). Part of the problem is the large latitudi-
nal extent of NA, further complicated by the presence of large
mountain chains running along almost the entire western conti-
nental boundary from north to south. These mountains influence
and disrupt circulation, and have a large impact on weather and
climate. Secondly, while the situation in Eurasia can be easily
attributed to temperature, in NA temperature and precipitation
are secondary in importance to soil moisture availability. This
can be seen in Fig. 10, which shows the lag-correlated coefficient
of determination (R2), calculated as

R2 = X′G′

X′2
, (2)

where R2 is the coefficient of determination, X′ is the meteorog-
ical forcing anomaly and G′ is the GPP anomaly.

In eq. (2), the overbar represents the mean of all gridcells on
the continent (weighted by cosine of latitude), and covariance
is calculated for multiple lags (zero, one, two, etc. months to
the end of the year). With these plots, we can determine what
fraction of the variability of a particular month’s GPP anomaly is
explained by the variability in meteorological forcing during the
same or a prior month. To read Fig. 10, locate the desired month
on the y-axis and move horizontally to the diagonal line. The
value or colour at this point represents the lag-zero relationship
between GPP and the chosen meteorological variable. Moving
to the right, the explained variability in GPP at increasing lag is
shown. The vertical axis shows the month of the forcing anomaly,
and the x-axis shows the month of GPP response.

There are several interesting features of Fig. 10. First, the
lack of variability explained solely by temperature is dramatic.
A slight signal in the spring and fall can be seen, with spring
having a longer influence than fall. There is a slight negative
influence of temperature in midsummer, which is intuitive. A hot
summer can impose stress on vegetation. Precipitation has more
overall influence than temperature, mainly during the summer
months when ecosystems can respond quickly to precipitation
events. Radiation has almost no influence, on a continental basis.

The idea that soil moisture availability has the most power
to explain North American GPP variability is supported by the
lower right panel in Fig. 10. The fraction of variability explained
is much higher that any other mechanism, and the lag covariance
has influence for a much longer period of time. Up to 25% of
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Fig. 10. Lag covariance (divided by total
variance) of GPP to anomalies in
temperature (upper left), precipitation (upper
right), radiation (lower left) and soil
moisture availability (lower right). Axes
represent time, shading shows increasing
covariance from light to dark. Lag
covariance is found by following the position
of a month on the vertical axis towards the
right along the dashed horizontal line.
Numerical value represents fraction of total
variance for GPP in a given month explained
by variance in forcing mechanism.

August GPP variability can be explained by January/February
soil moisture anomaly. This reinforces the idea that we cannot
point to a single meteorological driver to explain vegetation
response on the continent. Soil moisture availability is defined
by unique combinations of precipitation and temperature, and
is necessarily integrated through time with respect to both snow
and infiltration rate.

When continental GPP is partitioned temporally, spring is
the season that most frequently contributes more to the annual
anomaly than any other season. However, for a given region,
the annual variability is not confined to spring—it is common to
see almost any season except winter contain the largest fraction
of the annual anomaly for a region. Springtime meteorological
variability, generally in the form of anomalously warm (cool)
temperature, is correlated with anomalously high (low) GPP
over large areas north of the 40th parallel. The desert southwest,
not surprisingly, is tightly coupled with precipitation and soil
moisture availability on both an annual and seasonal basis.

It is intuitive that spring is the season that most commonly
determines the annual GPP anomaly. One would expect that an
early or late spring bud-burst and leaf-out would have an im-
pact on annual carbon budget. EOF analysis reveals a coherent
region of the continent, extending along 95◦ degrees west lon-
gitude from the Gulf of Mexico through the prairie provinces
of Canada and extending into New England, that exhibits con-

sistent springtime variability. This region commonly determines
the sign of the continental GPP anomaly for the spring. As spring
is the largest seasonal anomaly for almost half of the simulated
years, this region is the closest we can find to a bellwether for
continental-scale GPP variability. This region is not tightly cou-
pled to any single measurement of climate variability.

At present, we cannot make statements about North American
carbon uptake based on the values of climate indices. For exam-
ple, Hurrell (1995) reports on a persistent elevation of the NAO
index during the 1980s, but we see no corresponding response in
either regional- or continental-scale GPP. A high positive-phase
ENSO may suggest anomalously large GPP in the southwestern
United States in the spring, or a tightening of the polar vortex
may imply an early spring in northern Canada, but neither effect
is large enough to have implications on continental-scale car-
bon flux on a seasonal or annual basis. The pattern in coherent
springtime GPP variability that we find must be explained by
another method.
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Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M. 2003. CO2

flux history 1982-2001 inferred from atmospheric data using a global
inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964.

Roderick, M. L., Farquhar, G. D., Berry, S. L. and Noble, I. R.
2001. On the direct effect of clouds and atmospheric particles on
the productivity and structure of vegetation.Oecologia, 129, 21–30,
doi:10.1007/s004420100760.

Russell, J. L. and Wallace, J. M. 2004. Annual carbon dioxide drawdown
and the Northern Annular Mode. Global Biogeochem. Cycles 18,
GB1012, doi:10.1029/2003GB002044.

Sato, N., Sellers, P. J., Randall, D. A., Schneider, E. K., Shukla, J. and
co-authors. 1989. Implementing the Simple Biosphere Model (SiB)
in a General Circulation Model: Methodologies and results. NASA
Contractor Report 195509, 76pp.

Schaefer, K., Denning, A. S., Suits, N., Kaduk, J., Baker, I. and
co-authors. 2002. Effect of climate on interannual variability of
terrestrial CO2 fluxes. Global Biogeochem. Cycles 16(4), 1102,
doi:10.1029/2002GB001928.

Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I. and
co-authors. 2008. The combined Simple Biosphere/Carnegie-Ames-
Stanford Approach (SiBCASA) terrestrial carbon cycle model. J. Geo-
phys. Res. 113, G03034, doi:10.1029/2007JG000603.

Sellers, P. J., Mintz, Y., Sud, Y. C. and Dalcher, A. 1986. A Simple
Biosphere Model (SiB) for use within General Circulation Models. J.
Atmos. Sci. 43(6), 505–531.

Sellers, P. J. and Dorman, J. L., 1986. Testing the Simple Biosphere
Model (SiB) using point micrometeorological and biophysical data.
L. Clim. Appl. Meteor. 26, 622–650.

Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B. and Hall, F. G.
1992. Canopy reflectance, photosynthesis, and transpiration III. A
reanalysis using improved leaf models and a new canopy integration
scheme. Remote Sens. Environ. 42, 187–216.

Tellus (2010)



NORTH AMERICAN GPP 17

Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B. and
co-authors. 1996a. A revised land surface parameterization (SiB2) for
atmospheric GCMs. Part I: Model formulation. J. Clim. 9(4), 676–
705.

Sellers, P. J., Los, S. O., Tucker, C. J., Justice, C. O., Dazlich, D. A. and
co-authors. 1996b. A revised land surface parameterization (SiB2)
for atmospheric GCMs. Part II: The generation of global fields of
terrestrial biophysical parameters from satellite data. J. Clim. 9(4),
706–737.

Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G.
and co-authors. 1997. Modeling the exchanges of energy, water, and
carbon between continents and the atmosphere. Science 275, 502–
509.

Sheppard, P. R., Comrie, A. C., Packin, G. D., Angersbach, K. and
Hughes, M. K. 2002. The climate of the US Southwest. Clim. Res.
21, 219–238.

Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational con-
straints on the global atmospheric CO2 Budget. Science 247(4949),
1431–1438.

Thompson, D. W. J. and Wallace, J. M. 2000. Annular modes in the
extratropical circulation. Part I: month-to-month variability. J. Clim.
13, 1000–1016.

Tucker, C. J., Pinzon, J., Brown, M. E., Slayback, D. A., Pak, E. W.
and co-authors. 2005. An extended AVHRR 8-km NDVI data set
compatible with MODIS and SPOT vegetation NDVI data. Int. J.
Rem. Sens. 26(20), 4485–4498.

Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E. and co-
authors. 2007. Factors controlling CO2 exchange on timescales from
hourly to decadal at Harvard Forest. J. Geophys. Res. 112, G02020,
doi:10.1029/2006JG000293.
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ABSTRACT
We evaluate North American carbon fluxes using a monthly global Bayesian synthesis inversion that includes well-
calibrated carbon dioxide concentrations measured at continental flux towers. We employ the NASA Parametrized
Chemistry Tracer Model (PCTM) for atmospheric transport and a TransCom-style inversion with subcontinental
resolution. We subsample carbon dioxide time series at four North American flux tower sites for mid-day hours to
ensure sampling of a deep, well-mixed atmospheric boundary layer. The addition of these flux tower sites to a global
network reduces North America mean annual flux uncertainty for 2001–2003 by 20% to 0.4 Pg C yr−1 compared
to a network without the tower sites. North American flux is estimated to be a net sink of 1.2 ± 0.4 Pg C yr−1

which is within the uncertainty bounds of the result without the towers. Uncertainty reduction is found to be local
to the regions within North America where the flux towers are located, and including the towers reduces covariances
between regions within North America. Mid-day carbon dioxide observations from flux towers provide a viable means of
increasing continental observation density and reducing the uncertainty of regional carbon flux estimates in atmospheric
inversions.

1. Introduction

About half of the anthropogenic carbon emitted into the atmo-
sphere remains in the atmosphere each year. The remainder is
taken up by the ocean and terrestrial ecosystems through the
processes responsible for the natural exchange of carbon be-
tween the atmosphere and terrestrial vegetation and the surface
ocean (Denman et al., 2007; Forster et al., 2007). Numerous
studies (Myneni et al., 2001; Nemani et al., 2003; Potter et al.,
2003) show that climate cycles, local weather and ecosystem
conditions all affect the interannual variability of this uptake
of carbon. Our understanding of the mechanisms governing the
dynamics of the carbon cycle has been hampered by a limited
ability to locate and quantify these exchanges at sufficiently fine
temporal and spatial resolution (Bousquet et al., 2000; Gurney
et al., 2002; Ciais et al., 2005; Baker et al., 2006; Peters et al.,
2007). Accurate and precise quantification of sources and sinks
at regional and continental scales is likely to be increasingly

∗Corresponding author.
e-mail: mpbutler@meteo.psu.edu
DOI: 10.1111/j.1600-0889.2010.00501.x

important for evaluation and monitoring of carbon management
policies.

Global atmospheric inversions have been used to infer sources
and sinks of carbon (both natural and anthropogenic) at conti-
nental and ocean basin scale from atmospheric measurements of
carbon dioxide using tracer transport models. Model intercom-
parison projects, including the TransCom (Atmospheric Tracer
Transport Model Intercomparison Project) series (Gurney et al.,
2002; Gurney et al., 2004; Baker et al. 2006), have been de-
signed to attribute the uncertainties in the continental and ocean
basin fluxes estimated by this method. These studies show that
transport model differences and the uneven and sparse global
distribution of atmospheric carbon dioxide measurements con-
tribute to the uncertainty of the inverse flux estimates. While
transport models are improving and the global measurement
network for carbon dioxide is expanding, there are still funda-
mental representation and aggregation errors (Kaminski et al.,
2001; Engelen et al., 2002) inherent in the global atmospheric in-
version method. There is a mismatch in space and time resolution
between the transport models (grid boxes and minutes), the ob-
servations (points in space and time) and the inversion solution
(continents or subcontinents and months or weeks). Observa-
tions are subject to local atmospheric variations. These subgrid
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scale mesoscale variations are not explicitly accounted for in the
transport models; however, we use these local observations to
constrain continental and ocean basin results. In addition, global
inversions typically require strong and uncertain assumptions
about the correlation of fluxes and observations in space and
time. If the inversion solution is constructed at the continental
scale, for example, it is not possible to evaluate changes in fluxes
from subregions within the continent. These strong assumptions
about correlations of fluxes in space and time are a weakness;
the strengths of such a continental scale global inversion method
are the minimum number of unknowns and the global coverage.
Some assumptions about coherence in space and time are essen-
tial; atmospheric observations will always be uneven and sparse
at some level of resolution.

A compelling approach is to invert on the grid and time scale
of the transport model (Kaminski et al., 2001; Engelen et al.,
2002). Global atmospheric inversions at the spatial resolution of
the transport model (e.g. Rödenbeck et al., 2003a; Gourdji et al.,
2008; Mueller et al., 2008), aim for the finest resolution possible
to minimize representation assumptions, at the expense of larger
posterior covariances. Subsequent aggregation into coarser re-
gional and temporal resolution is then used to lessen the poste-
rior error. Regional atmospheric inversions target a geographi-
cally limited domain with finer spatial and temporal resolution
(Gerbig et al., 2003; Peylin et al., 2005; Lauvaux et al., 2008;
Schuh et al., 2009). Both of these approaches involve many more
unknowns, which cannot be resolved independently given the
current observation density. The underlying assumptions may
be minimized, but at the expense of building prior covariance
matrices and the increased computational costs required by the
finer resolution.

In this experiment we take a pragmatic, middle-ground ap-
proach to the continental-scale global inversion by choosing a
number of regions roughly matched to the observation density
currently available. If we have chosen observation sites that
are representative of the regions and sensitive to the surface
exchanges in these regions, then we expect that posterior un-
certainties and spatial correlations will be reduced and that the
problem will be computationally tractable using simple inver-
sion methods. Inversion results can be aggregated to the larger
TransCom continental regions for comparison with published
results. We can also test the ability of the expanded network to
constrain the smaller regions with this method.

Typically global atmospheric measurement network sites have
been chosen to facilitate sampling background concentrations of
trace gases including carbon dioxide. These background mea-
surement networks have yielded important understanding of in-
terhemispheric gradients in carbon dioxide mixing ratios (Tans
et al., 1990; Denning et al., 1995; Keeling et al., 1996) and of the
mean annual cycles of carbon emissions and uptake (e.g. Keeling
et al., 1995). These data, however, provide limited understanding
of the continental carbon cycle. We cannot diagnose continental
or regional scale fluxes and determine the factors influencing

terrestrial fluxes without observing sites over the continents.
Continental carbon dioxide measurements are characterized by
strong diurnal and seasonal cycles that reflect a combination
of biological fluxes and atmospheric boundary layer dynamics
(Bakwin et al., 1998; Yi et al., 2001; Davis et al., 2003). Conti-
nental data also contain strong gradients driven by weather (e.g.
Hurwitz et al., 2004; Wang et al., 2007; Parazoo et al., 2008).
These strong, rapidly varying gradients in the observations may
be difficult to simulate in the transport, but the continental data
contain information needed to resolve regional sources and sinks
of carbon with increasing spatial and temporal resolution.

In this paper, we use the Bayesian synthesis inversion method
to demonstrate the impact of including more continental mea-
surement sites in the global measurement network. The added
sites are long-running eddy covariance flux towers with high pre-
cision carbon dioxide measurements calibrated to global stan-
dards. Carbon dioxide measurements at flux towers do not need
to be calibrated to global standards for the calculation of net
ecosystem exchange of carbon dioxide using the eddy covari-
ance method. The sites used in this study, however, are part of
a growing network where the calibration is done with the intent
of providing data suitable for application to atmospheric inver-
sion studies. The five towers used in this study have data avail-
able during the 2000–2004 time period. Increasing numbers of
flux towers are incorporating the calibration processes into their
routine processing; this offers opportunities for extending this
research in the future.

We focus here on the effect on the North American carbon
balance, recognizing the danger that, in an ill-conditioned prob-
lem such as this, increasing the density of observations in North
America may introduce new challenges. For example, global
inversions typically exhibit dipole behaviour or ‘pair-sum’ re-
lationships (Rödenbeck et al., 2003a) where the flux as a sum
for two regions can be constrained, while the individual re-
gions cannot. Within North America we may discover dipoles
between the subregions that were not apparent in the continental-
scale inversion. With the exception of Boreal Asia, the Northern
Hemisphere is well represented in the networks tested (Fig. 2).
Concentrating observation sites in North America may highlight
dipole relationships between Boreal Asia and other regions of
the Northern Hemisphere. Some recent inversions, for example,
find a larger terrestrial carbon sink in Europe (Baker et al., 2006;
Mueller et al., 2008) and others in Asia (Rödenbeck et al., 2003a;
Peters et al., 2007). Published inversion results also frequently
disagree with estimates of carbon fluxes from biogeochemical
models (Janssens et al., 2003; Peters et al., 2007; Potter et al.,
2007). We will examine our results in this light, but concentrate
on the uncertainty improvement of the added measurement sites
in this paper.

In Section 2, we describe the estimation method. In Section 3,
we present global and North American results for two typical
global measurement networks and a third network including
five additional continental sites. The results are discussed in
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Fig. 1. Overview of the Bayesian synthesis inversion method.

Section 4. We conclude in Section 5 with recommendations for
applicability of the method to future experiments.

2. Methods

2.1. Estimation method

The Bayesian synthesis inversion method used is shown in
Fig. 1 and described by Enting (2002) and Tarantola (2005), with
the experimental protocol (Gurney et al., 2000) following closely
that of the TransCom interannual variability model intercompar-
isons (Baker et al., 2006; Gurney et al., 2008). We depart from
the TransCom inversion method in a few important respects. (1)
For observation data, we use monthly means and standard devi-
ations derived directly from site observations of carbon dioxide
(Rödenbeck et al., 2003b) instead of using a smoothed data
product, such as GLOBALVIEW-CO2 (GLOBALVIEW-CO2,
2007) and assigned uncertainties (Baker et al., 2006). (2) We
use annually varying meteorological driver data in our transport
modelling. (3) Finally, we include biomass burning emissions
explicitly.

The solution is for monthly carbon source/sink estimates
(2000–2004) for 47 subcontinental regions and ocean basins us-

ing monthly mean carbon dioxide mixing ratio measurements.
Figure 2 shows the region definitions and locations of the ob-
serving sites. The problem is ill-constrained due to the sparse
and uneven distribution of observations; the method solves for
adjustments to natural land– and ocean–atmosphere exchanges
(referred to here as background fluxes) within the constraint of
imposed prior uncertainties. Fossil fuel emissions and biomass
burning emissions are assumed to be correct and not adjusted in
the inversion process.

Following Baker et al. (2006), the atmospheric carbon dioxide
at a measuring site can be represented as the linear combination
of responses at the location to the background fluxes and to the
unknown adjustment fluxes from each of the regions and months,

cobs = cfwd + Hx, (1)

where cobs is the time series of monthly carbon dioxide obser-
vations, cfwd is the modelled concentration time series using the
background fluxes, H is a transport matrix (described below)
and x are the unknown monthly adjustments to the background
terrestrial and ocean fluxes for each of the 47 regions. Solving
for the unknown monthly adjustments x is done, using a singular
value decomposition approach for numerical stability (Rayner
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et al., 1999), to the minimization of the cost function

J = (cobs − cfwd − Hx)T R−1 (cobs − cfwd − Hx)

+ (x − x0)T P−1
0 (x − x0) (2)

where R is the covariance matrix specifying the observation,
transport and representation error of the data, x0 are a priori
estimates of the solution and P0 is the covariance matrix of un-
certainties of these a priori estimates. In this experiment both R
and P0 are described by diagonal matrices, as has been common
practice in previous TransCom experiments (Gurney et al., 2002;
Gurney et al., 2004; Baker et al., 2006). This cost function min-
imization is a least squares solution weighted by the variability
of the observations and penalized for deviation from the a priori
estimates. The analytical solution for the flux adjustments x̂ is

x̂ = (
HT R−1H + P−1

0

)−1 (
HT R−1 (cobs − cfwd) + P−1

0 x0
)

(3)

and the a posteriori covariance matrix is given by

P−1 = P−1
0 + HT R−1H (4)

allowing examination of the covariances for independence of the
solution. This analytical a posteriori uncertainty is a function of
the uncertainty of the prior flux estimate and the uncertainty
attributed to the observations and assumes that the problem
meets the requirements of the method. We have oversimplified
both the data errors (uncertainty of observations and transport)

and the model errors (prior flux uncertainty) by assuming they
are independent and can be modelled using Gaussian distri-
butions. Tarantola (2005) warns that the a posteriori solution
may not be robust and may be particularly sensitive to outlier
data points if these assumptions are not met. As a consequence,
the accuracy of the a posteriori covariance is limited by the
assumptions inherent in the a priori flux uncertainty and data
uncertainty assignments. Even if the a posteriori covariance is
optimistic, analysis of the region–region covariances provides
valuable information about the flux estimates and the extent of
the constraint provided by the network. Another product of this
inversion method is a set of predicted observations, the carbon
dioxide concentration values that would be expected at each ob-
servation site given the a posteriori flux solution. The predicted
observations provide a basis for analysis of the data residuals,
which cannot be done with the fluxes.

The analytical solution delivers an adjustment to the back-
ground fluxes for each region and month in 2000–2004. Results
for the central years 2001–2003 are retained for analysis. The
first and final year of the solution are discarded to minimize
edge effects, including inaccuracies introduced by the spinup
method described below and the length of time it takes an at-
mospheric signal to reach distant observation sites. All results
reported here are the adjusted land and ocean fluxes includ-
ing the assumed biomass burning emissions for each month in
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order to compare with published results. The assumed back-
ground fossil emissions are not included. Choices for the com-
ponents of the method shown in Fig. 1 follow.

2.2. Background fluxes

The terrestrial background flux is the annually varying hourly
SiB3 terrestrial flux (Baker et al., 2008) as prepared for the
TransCom continuous experiment (Law et al., 2008; Patra et al.,
2008). An alternative terrestrial flux with monthly (but not di-
urnal or annual) variability, the CASA climatology (Randerson
et al., 1997) used in previous TransCom experiments, is also
tested to investigate the solution dependence on the terrestrial
background flux used and the time resolution of the flux. The
ocean background flux is the monthly climatology of Takahashi
et al. (2002), also as used in the TransCom continuous experi-
ment. The seasonally varying fossil fuel emissions, as described
by Erickson et al. (2008), are based on the 1995 spatial distribu-
tion of Brenkert (1998) and Li (1996), with annual totals scaled
to the appropriate years based on Marland et al. (2007). The
interannually varying monthly biomass burning emissions are
from the Global Fire Emissions Database version 2 (GFED2)
(Giglio et al., 2006; van der Werf et al., 2006). Each background
flux (4 tracers × 5 yr) is regridded to the horizontal spatial grid
of the transport model and used as a surface boundary condition
for a forward run from the beginning of the applicable year to
the end of 2004. The model output is sampled hourly to allow
for matching of sampling of the transport model output with the
observations (see Section 2.8) when constructing the cfwd time
series represented in eq. (1).

2.3. Transport response functions

The 47 regions specified for the solution are shown in Fig. 2 and
listed in Table 1. The 11 ocean regions are the same as those
used in the TransCom experiments. The 36 land regions are con-
formable to the TransCom land regions. The Boreal Asia, Tem-
perate Asia, Tropical Asia and Australia regions are defined as
in TransCom. Remaining TransCom regions are subdivided into
subregions: Boreal North America (3 regions); Temperate North
America (7); Tropical America (3), Temperate South America
(2), Europe (7), Northern Africa (5) and Southern Africa (5).
These continental regions are subdivided, roughly according to
biome, to test the degree to which the solutions can be con-
strained given current and future observing sites. For North
America and Europe the number of regions is similar to the
number of available continental observing sites. The results for
these regions are aggregated to larger regions for reporting and
comparison with published results.

To construct the transport matrix H, emissions of known mag-
nitude (1 month duration at an annual rate of 1 Pg carbon emis-
sion) are run forward as inert species through the transport model
for each region-month (47 regions × 12 months × 5 yr), be-

ginning in the applicable month and year and ending after 25
months of transport or the end of 2004. Model output is sampled
hourly at each observation location through the 25 months (or
less) of each region-month transport run, and then assumed to
remain at a constant well-mixed, residual level after the trans-
port is terminated through the end of 2004. Longer transport
runs showed that the assumption of a well-mixed concentration
beyond 25 months is justified.

The flux spatial distributions (or flux patterns) for the transport
response functions within each terrestrial region are based on an-
nual NPP simulated by CASA monthly climatology (Randerson
et al., 1997), scaled to the transport model grid cells within each
region. The pattern is derived from the similar regional patterns
in the TransCom experiments (Gurney et al., 2000) and regrid-
ded to the spatial resolution of the transport model used here.
There is no variation by model grid cell within the ocean regions.
These land and ocean flux patterns constitute a hard constraint
in this inversion method. The inversion solution specifies the
adjustment to the background flux for the region as a whole; the
distribution of the flux within the region is fixed by these flux
patterns.

2.4. Tracer transport model

The tracer transport model used in this experiment is the Col-
orado State University version of the NASA Parametrized Chem-
istry Tracer Model (PCTM), described in Kawa et al. (2004)
which has participated in TransCom experiments. Winds, tem-
peratures, diffusion coefficients and convective mass fluxes are
from the NASA Goddard Earth Observation System 4 (GEOS-4)
data assimilation system (Bloom et al., 2005). The 6-hourly me-
teorological driver data are linearly interpolated to the 15-min
time step of the model. The model is run on a 2.5◦ longitude by
2.0◦ latitude grid, with 25 hybrid vertical layers. The model ex-
hibited intermediate performance in the TransCom Interannual
Variability model intercomparisons (Baker et al., 2006; Gurney
et al., 2008) and is also one of the three models used in the
Gurney et al. (2005) study of the potential bias in inver-
sions caused by using non-varying background fossil emissions.
Gurney et al. (2005) chose PCTM for its intermediate perfor-
mance among the TransCom models with regard to key transport
characteristics: the simulated annual zonal mean surface carbon
dioxide concentration responses to non-varying fossil fuel emis-
sions and, separately, to the neutral biosphere flux. The responses
to these surface fluxes are dependent on the volume in which the
surface fluxes are mixed (the planetary boundary layer depth),
the seasonal phasing of the surface fluxes and the transport and
the subgrid-scale parametrization used for vertical mixing. For
PCTM, the interhemispheric gradient established by the fossil
emissions is relatively large compared to the other TransCom
models (Gurney et al., 2005), but there is a relatively weak
seasonal rectifier (covariance of the terrestrial background flux
and seasonal differences in vertical mixing close to the model
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Table 1. Spatial resolution of the inversion with prior specifications and 2001–2003 mean annual posterior flux solution for the continental
extension network. All units are in Pg C yr−1. Aggregated land regions are shown in bold. Net posterior flux plus biomass burning emissions, but
not fossil emissions

Mean Annual Prior Specifications Annual Mean Posterior Results

Prior Flux Prior Fossil Burning Post. Flux Net Post. Post.
Error Emiss. Emiss. Flux error

Land Regions
Boreal North America 0.00 1.27 0.01 0.02 −0.06 −0.04 0.34
Western Boreal 0.00 1.09 0.01 0.01 −0.22 −0.20 0.38
Northern Boreal 0.00 0.22 0.00 0.00 0.05 0.05 0.19
Eastern Boreal 0.00 0.62 0.00 0.01 0.09 0.11 0.22
Temperate North America 0.00 1.24 1.88 0.01 −1.18 −1.17 0.42
Pacific Northwest 0.00 0.47 0.08 0.01 −0.34 −0.33 0.35
Central Plains 0.00 0.55 0.14 0.00 −0.03 −0.03 0.22
North Central 0.00 0.30 0.13 0.00 −0.10 −0.10 0.17
Northeast 0.00 0.84 0.78 0.00 −0.67 −0.67 0.25
Southwest 0.00 0.16 0.30 0.00 −0.09 −0.09 0.08
Southeast 0.00 0.37 0.38 0.00 0.08 0.08 0.26
Subtropical 0.00 0.21 0.07 0.00 −0.04 −0.03 0.19
Tropical America 0.00 1.25 0.14 0.20 −0.04 0.16 0.81
Central America 0.00 0.43 0.11 0.05 −0.07 −0.02 0.36
Northern Amazon 0.00 0.75 0.03 0.04 −0.05 −0.01 0.49
Southern Amazon 0.00 0.90 0.00 0.11 0.08 0.19 0.75
Temperate South America 0.00 1.56 0.13 0.12 0.51 0.63 0.89
Northern 0.00 1.53 0.12 0.12 0.50 0.63 0.91
Southern 0.00 0.27 0.01 0.00 0.00 0.01 0.25
Northern Africa 0.00 1.31 0.12 0.61 0.27 0.98 0.67
Mediterranean Coast 0.00 0.14 0.05 0.00 0.10 0.10 0.11
Northern Arid 0.00 0.14 0.04 0.00 −0.02 −0.02 0.13
Northern Dry Savanna 0.00 0.67 0.01 0.12 0.02 0.14 0.58
Northern Mesic Savanna 0.00 1.10 0.02 0.48 0.28 0.76 0.74
Horn 0.00 0.17 0.00 0.01 −0.01 0.00 0.17
Southern Africa 0.00 1.51 0.13 0.61 −1.22 −0.62 0.68
Western Forest 0.00 0.43 0.02 0.06 −0.07 −0.00 0.42
Southern Mesic Savanna 0.00 1.39 0.01 0.46 −0.95 −0.49 0.64
Southern Dry Savanna 0.00 0.34 0.10 0.06 −0.16 −0.10 0.27
Southern Arid 0.00 0.14 0.00 0.00 −0.04 −0.04 0.14
Madagascar 0.00 0.14 0.00 0.02 −0.01 0.01 0.14
Boreal Asia 0.00 3.42 0.14 0.21 −0.49 −0.28 0.52
Temperate Asia 0.00 0.95 2.16 0.04 −0.26 −0.22 0.34
Tropical Asia 0.00 0.47 0.53 0.24 −0.35 −0.11 0.31
Australia 0.00 0.51 0.10 0.16 −0.29 −0.12 0.38
Europe 0.00 1.94 1.86 0.04 −0.62 −0.58 0.47
British Isles 0.00 0.15 0.18 0.00 −0.02 −0.02 0.12
Scandinavia 0.00 0.36 0.08 0.00 0.03 0.03 0.14
North Central 0.00 1.69 0.49 0.03 −1.15 −1.12 0.60
Western 0.00 0.28 0.31 0.00 0.03 0.03 0.16
Central 0.00 0.39 0.41 0.00 −0.06 −0.06 0.20
Eastern 0.00 0.71 0.32 0.01 0.53 0.54 0.36
Iberia 0.00 0.16 0.09 0.00 0.03 0.03 0.14

Ocean Regions

North Pacific −0.49 0.53 0.02 0.00 −0.28 −0.27 0.24
Tropical West Pacific 0.11 0.10 0.00 0.00 0.05 0.05 0.09
Tropical East Pacific 0.51 0.44 0.00 0.00 0.24 0.24 0.30
South Pacific −0.26 0.29 0.00 0.00 −0.32 −0.32 0.24
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Table 1. Continued

Mean Annual Prior Specifications Annual Mean Posterior Results

Prior Flux Prior Fossil Burning Post. Flux Net Post. Post.
Error Emiss. Emiss. Flux error

Northern −0.29 0.25 0.00 0.00 −0.26 −0.26 0.16
North Atlantic −0.28 0.32 0.02 0.00 −0.14 −0.14 0.18
Tropical Atlantic 0.13 0.11 0.00 0.00 0.10 0.10 0.11
South Atlantic −0.13 0.14 0.00 0.00 −0.14 −0.14 0.13
Southern −0.65 0.58 0.00 0.00 −0.38 −0.38 0.20
Tropical Indian 0.19 0.18 0.00 0.00 0.17 0.17 0.16
South Indian −0.48 0.44 0.00 0.00 −0.28 −0.28 0.28

surface, resulting in an elevated annual mean mixing ratio in
the atmospheric boundary layer relative to the free troposphere
(Denning et al., 1995)). The interhemispheric exchange time, as
defined in Denning et al. (1999), is slightly faster than average
among the TransCom models (Kawa et al., 2004). Additional
detail about the transport model performance can be found in
Parazoo et al. (2008).

To establish the atmospheric interhemispheric gradient of car-
bon dioxide, we used a spin up procedure that differs from the
technique used in TransCom-IAV (Baker et al., 2006), where
there is no annual variability in the modelled responses used to
construct the transport matrix H. The background fluxes were
emitted as boundary conditions for 1 yr and the transport was
continued for an additional 24 months for each model that par-
ticipated in TransCom-IAV. In a similar manner the tracer re-
sponse functions are the result of forward runs with one month
of emission and the following 36 months of transport only. Each
participating modeller made his own choice of transport fields.
In constructing the transport matrix H, the same 36 months of
responses are reused, beginning in each year of the inversion
period. In TransCom-IAV, with its long analysis period, the first
years are discarded in the analysis as they contain only the first
years of responses. In our case, our goal was to use transport
fields to match the years of the carbon dioxide observations.
We had available only 5 yr of transport fields (2000–2004) at
the time the forward runs were executed. In order to maximize
an already short analysis period, we augmented the year 2000
responses with representative model response data to simulate
responses to background fluxes and monthly response functions
from years before 2000. We then discarded inversion results from
the year 2000 in our analysis results to minimize any potential
effects of this procedure.

2.5. A priori constraints

The a priori constraint consists of a flux term and an uncer-
tainty specification at monthly resolution for each region-month
flux adjustment in the inversion solution and for the background

fluxes. The region-month a priori flux adjustments in this exper-
iment are set at zero, implying ‘no correction’ to the monthly
background terrestrial and ocean fluxes, as well as the fossil fuel
and biomass burning emissions. This procedure differs from
some other methods that may incorporate best guess adjust-
ments or biomass burning emissions or other land use change
fluxes in the a priori specifications. The terrestrial background
flux is annually neutral; the ocean background flux specifies a
global annual sink of 1.6 Pg C; biomass burning emissions are
∼2 Pg C annually; fossil flux emissions are ∼7 Pg C annually
for this period. In order to balance the global growth in atmo-
spheric carbon dioxide concentration, there is an expectation
that the inversion-adjusted terrestrial and ocean region-month
fluxes will be a net sink. The region-month uncertainties used
to populate the variances in the diagonal values of P0, the a
priori flux covariance matrix, vary by month, summing globally
to 5.4 Pg C annually. This range is larger than the 2.8 Pg C
annual uncertainty used in the TransCom interannual variabil-
ity control (Baker et al., 2006) and network sensitivity (Gurney
et al., 2008) experiments. The magnitude of the monthly uncer-
tainties is intended to be loose enough to allow the inversion
to make substantial adjustments to the background terrestrial
and ocean fluxes while remaining biogeochemically realistic.
These region-month uncertainties are calculated as the sum of
the magnitudes of three months of the applicable background
flux (terrestrial or ocean) for the region centred on each month.
This allows the inversion ‘room’ to correct for timing differ-
ences in seasonal cycles and generally allows for more lati-
tude for adjustment in months when the fluxes are of largest
magnitude.

2.6. Observation site networks

Observation site locations are shown on the map in Fig. 2.
Table 2 details the observation site names, locations, respon-
sible agencies, references and the range of monthly variabil-
ity of observations. The observation sites include observato-
ries, tall towers, flask sampling sites and an aircraft vertical
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profile from the NOAA ESRL network (http://www.esrl.noaa.
gov/gmd/ccgg/index.html), sites from other measurement pro-
grams with data archived at the World Meteorological Organi-
zation (WMO) Global Atmosphere Watch World Data Center
for Greenhouse Gases (//gaw.kishou.go.jp/wdcgg/wdcgg.html)
and carbon dioxide time series from five flux towers. We have
selected quasi-continuous measurement programs (in-situ mea-
surements available as hourly averages) preferentially over dis-
crete measurement programs (sampled approximately weekly in
flasks for later analysis). We have excluded colocated measure-
ment programs, retaining the highest samples from tall towers
and the quasi-continuous measurement programs that are colo-
cated with discrete measurement programs. The goal is to use
measurements calibrated to the WMO standards for carbon diox-
ide (Zhao et al., 1997; Tans et al., 2003; Zhao and Tans, 2006).
Calibration to WMO standards across multiple measurement
methods and agencies has proved to be a challenge (Masarie
et al., 2001). Law et al. (2003) show that the impact of inter-
agency calibration offsets can be accommodated in inversions
on synoptic time scales (∼5 d), but may be significant on the
monthly time scale we use in this experiment. To the extent
that we have included observations from multiple measurement
programs, we may have introduced bias into our results.

Stations are selected based on data availability to minimize
bias introduced by gap filling. An upper limit of 12 missing
months during the 2000–2004 time period was allowed, with a
few exceptions for sites which began operation after 2000 (tall
tower in Moody, Texas; flux towers at Southern Great Plains
and Tapajos). This requirement prohibited the use of a number
of sites that would be used if a smoothed, extrapolated data
product such as GLOBALVIEW (GLOBALVIEW-CO2, 2007)
were used. Three networks are tested in this experiment. The
first is a 43-site base network, sourced from three agencies:
National Oceanic and Atmospheric Administration Earth Sys-
tem Research Laboratory (NOAA ESRL), Environment Canada
(EC) and CSIRO Marine and Atmospheric Research GASLAB
in Australia. All of the observation sites in this network are
also used in CarbonTracker (Peters et al., 2007; CarbonTracker
2008, http: //carbontracker.noaa.gov); we cannot use some of the
CarbonTracker network sites due to the completeness of record
requirement of our method. A 73-site enhanced network in-
cludes sites from other agencies, including high altitude aircraft
and mountain top sites, archived at the World Data Center for
Greenhouse Gases. These sites are used to improve global cover-
age. The last network, the 78-site continental extension network,
adds the five flux tower observation sites. A primary objective of
this experiment is to show the effect on the inversion estimates
of including the four added North American continental sites.

2.7. Observation data preparation

Observations are selected with minimal screening for data
quality issues identified by the observing agencies. For quasi-

continuous continental sites, mid-day hours are selected (12–16
local standard time), except for mountain top sites where mid-
night hours are used. This selection is intended to maximize the
contribution to the monthly mean of the hours representing well-
mixed atmospheric conditions; these are conditions most likely
to be modelled correctly in the tracer transport model. Monthly
means are calculated from all available hours in the daily selec-
tion time periods without regard to meteorological conditions.
Data uncertainties for each month are computed as the standard
deviations of the available data for the month, with an imposed
minimum of 0.5 ppm. These uncertainties, as variances, are
used to populate the diagonal data covariance matrix R (eqs
2, 3 and 4). We have not included additional model-data mis-
match error in R to account for errors in model transport or the
representation of regions by point observation sites; we have
equated synoptic monthly variability of the selected hours of
observations with the total data error. Preliminary experiments
with added model-data mismatch error effectively de-weighted
observations to the point of overreliance on the a priori fluxes,
with minimal adjustments to the background fluxes and large
data residuals. This aspect of our method warrants further re-
search. Table 2 includes the range of monthly variability for
each station. Compared to the TransCom interannual variability
experiment (Baker et al., 2006), these uncertainties are larger
by ∼0.2 ppm at the minimum and up to two times larger at
the maximum for remote sites. For continental and coastal sites,
the minimum uncertainties are comparable and maximum un-
certainties are at least as large as those in Baker et al. (2006),
which used the GLOBALVIEW smoothed data product for the
observation data time series and added model-data mismatch
error for some observation sites.

For this analytical solution method, a regular time resolu-
tion is implied, making it necessary to fill gaps in the data for
months with no observations. For observation sites that are rep-
resented in GLOBALVIEW (GLOBALVIEW-CO2, 2007), gaps
are filled with the average of the GLOBALVIEW site data for
the weeks corresponding to the month to be filled. For stations
with no GLOBALVIEW representation, a climatology is con-
structed of the monthly departure of existing observations at the
station from the GLOBALVIEW marine boundary layer (MBL)
value for the station latitude. This difference climatology is ap-
plied to the MBL value for the missing months to fill the gap.
The uncertainty for each gap-filled month is assigned as ei-
ther the climatologic observation variability for the month for
the station in 2000–2004 or a mean variability for all months
with existing observations for the 2000–2004 time series for the
station.

2.8. Model sampling

Model sampling is accomplished by saving vertical profiles of
tracer concentration, pressure and temperature at the model grid
cell nearest to each observing site hourly for the duration of
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the forward runs of the tracer transport model. Coastal stations
are sampled in an off-shore grid cell to approximate observa-
tion protocol for flask sampling of background air. For surface
observing stations the concentration samples are taken from the
surface layer in the chosen grid cell. For elevated stations, noted
as non-surface in Table 2, vertical pressure interpolation is used
to resolve the concentration sample to an equivalent elevation.
Hourly samples from all transport model forward runs were
saved as described in Sections 2.2 and 2.3. The hourly samples
that match the measurement time stamps of the observations are
selected for use in the construction of the transport matrix H
(eq. 2), a concept referred to as cosampling (Peters et al., 2007).
For the discrete flask and aircraft observation sites, 3 h of model
samples centred on the hour of each observation are used to
smooth discrepancies in timing of weather events in the trans-
port. Monthly mean model samples are calculated from these
cosampled hours for each observation site from the forward
runs for each of the region-month pulses and the background
fluxes and used to populate the transport matrix H.

In the event of a month-long gap in the observation data, a
default model sampling strategy is required. In this case model
samples are chosen from the same hours that an observation
sample would have been taken (daily selected hours for quasi-
continuous sites and on 5 d during the month for flask sampling
sites). The default hours for flask sampling are based on the dis-
tribution of hours when samples were taken during 2000–2004
at the respective sampling sites. Monthly means computed from

these selected hours are used to fill in the gaps in the cosampled
transport matrix H.

3. Results

All results shown are the adjusted land and ocean a posteriori flux
estimates including the fixed biomass burning emissions, but not
the fossil fuel emissions. This convention allows comparisons
to previous work in the literature. Error bars in the figures are
± the mean annual uncertainty from the a posteriori covariance.

3.1. Global results

Figure 3 shows the mean annual estimated fluxes and
analytically-derived uncertainties for the analysis period
(2001–2003) for the three networks tested (triangles for the base
network, diamonds for the enhanced network and squares for the
continental extension), aggregated to the 22 TransCom continent
and ocean basin regions. Results for the continental extension
network are also listed in Tables 1 and 3. The CarbonTracker
2008 (http://carbontracker.noaa.gov) results for the same time
period are shown as a benchmark reference (circles in Fig. 3).
For all three networks in our experiment the increase in the
global atmospheric burden of carbon (from the net of the esti-
mated global sink and the assumed biomass burning and fossil
fuel emissions) is consistent within 0.1 Pg C yr−1 of the ∼ +2.1
ppm average annual increase in global surface carbon dioxide
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Table 3. Comparisons of 2001–2003 mean annual flux and uncertainty estimates from the continental extension network of this study using SiB3
and CASA background terrestrial fluxes, the NASA PCTM and 13-model mean results from the TransCom IAV network sensitivity experiment
(95-site network in Gurney et al., 2008) and CarbonTracker2008. All units are Pg C yr−1. Flux estimates include biomass burning emissions, but not
fossil fuel emissions

This Study This Study TransCom TransCom CarbonTracker
SiB3 Bio CASA Bio IAV PCTM IAV Model 2008
Background Background Mean

Aggregated Land Regions

Boreal North America −0.04 ± 0.34 −0.17 ± 0.31 −0.39 ± 0.11 −0.41 ± 0.35 −0.07 ± 0.40
Temperate North America −1.17 ± 0.42 −1.25 ± 0.39 −0.92 ± 0.20 −0.82 ± 0.50 −0.47 ± 0.51
Tropical America 0.16 ± 0.81 −0.60 ± 0.63 0.72 ± 0.54 1.51 ± 1.49 0.05 ± 0.63
Temperate South America 0.63 ± 0.89 0.58 ± 0.83 −0.01 ± 0.57 −0.09 ± 0.84 −0.07 ± 0.81
Northern Africa 0.98 ± 0.67 1.05 ± 0.64 0.86 ± 0.45 0.77 ± 1.01 0.01 ± 0.52
Southern Africa −0.62 ± 0.68 −0.27 ± 0.65 −0.19 ± 0.44 −0.50 ± 1.30 0.27 ± 0.60
Boreal Asia −0.28 ± 0.52 −0.51 ± 0.47 0.14 ± 0.19 0.03 ± 0.43 −0.69 ± 1.21
Temperate Asia −0.22 ± 0.34 −0.03 ± 0.37 −0.79 ± 0.22 −0.98 ± 0.67 −0.25 ± 0.54
Tropical Asia −0.11 ± 0.31 −0.08 ± 0.31 0.21 ± 0.29 −0.10 ± 0.53 0.10 ± 0.23
Australia −0.12 ± 0.38 0.07 ± 0.37 −0.15 ± 0.19 −0.02 ± 0.26 −0.07 ± 0.33
Europe −0.58 ± 0.47 −0.44 ± 0.41 −0.41 ± 0.16 −0.35 ± 0.66 −0.16 ± 0.76

Ocean Regions

North Pacific Ocean −0.28 ± 0.24 −0.34 ± 0.23 −0.58 ± 0.14 −0.79 ± 0.32 −0.43 ± 0.38
Tropical West Pacific Ocean 0.05 ± 0.09 0.06 ± 0.09 −0.08 ± 0.13 −0.05 ± 0.30 0.03 ± 0.02
Tropical East Pacific Ocean 0.24 ± 0.30 0.36 ± 0.29 0.45 ± 0.17 0.48 ± 0.23 0.44 ± 0.23
South Pacific Ocean −0.32 ± 0.24 −0.27 ± 0.24 −0.55 ± 0.19 −0.46 ± 0.38 −0.41 ± 0.46
Northern Ocean −0.26 ± 0.16 −0.17 ± 0.15 −0.03 ± 0.08 −0.27 ± 0.25 −0.26 ± 0.18
North Atlantic Ocean −0.14 ± 0.18 −0.14 ± 0.18 −0.22 ± 0.13 −0.27 ± 0.18 −0.40 ± 0.41
Tropical Atlantic Ocean 0.10 ± 0.11 0.11 ± 0.11 0.09 ± 0.15 0.11 ± 0.23 0.19 ± 0.15
South Atlantic Ocean −0.14 ± 0.13 −0.20 ± 0.13 −0.28 ± 0.12 −0.24 ± 0.20 −0.12 ± 0.24
Southern Ocean −0.38 ± 0.20 −0.38 ± 0.20 −0.21 ± 0.10 −0.27 ± 0.24 −0.19 ± 0.28
Tropical Indian Ocean 0.17 ± 0.16 0.14 ± 0.15 0.02 ± 0.17 0.39 ± 0.30 0.16 ± 0.13
South Indian Ocean −0.28 ± 0.28 −0.27 ± 0.28 −0.36 ± 0.11 −0.44 ± 0.19 −0.60 ± 0.24

for this period. The proportion of the global sink attributed to
land regions across the three networks (58% for the base net-
work, 46% for the enhanced network and 53% for the continental
extension) shows, at the global level, some sensitivity of the so-
lution to the composition of the network. Although the tropical
and southern regions are not individually well-constrained, for
all three networks the tropical land/ocean source and the south-
ern land/ocean sink sum to a 0.3 Pg C yr−1 source. The tropical
plus southern latitudinal band is constrained by these networks,
but the flux distribution within these bands is not well-defined.
The ocean region fluxes are mainly consistent within uncertain-
ties across the solutions obtained from the three networks.

The three networks attribute 71–77% of the northern sink
of 3.0–3.1 Pg C yr−1 to the land regions, with the sink for
the ocean regions (North Pacific, North Atlantic and North-
ern Oceans) consistent at 0.7–0.9 Pg C yr−1 across the three
solutions. However, the distribution of the land fluxes among
continents depends very much on the network. For the base net-
work, the land sink is split between Asia (Boreal and Temperate
Asia regions accounting for 52%) and North America (Boreal
and Temperate North America regions accounting for 37%),

leaving Europe with 11%. Introducing east Asian observation
sites, the western Pacific high altitude aircraft observations and
mountain-top observations in Europe in the enhanced network
shifts some of the Asian flux to Europe for an Asia:North Amer-
ica:Europe balance of 30%:39%:31%. This flux redistribution is
accompanied by reductions in uncertainty for Europe and Asian
regions (for example, Tropical Asia region annual uncertainty
changes from 0.42 to 0.31 Pg C yr−1 and Europe from 0.54 to
0.48 Pg C yr−1). The continental extension network with the four
additional continental North American sites shifts more of the
flux to North America (22%:53%:25%), with a reduction in
uncertainty in North America (from 0.51 to 0.40 Pg C yr−1),
but not in Asia or Europe. The absence of observation sites
in Boreal Asia and North Central Europe makes these regions
under-constrained.

Two network-related shifts are seen in ocean fluxes between
the base network and the enhanced network: the first is a trans-
fer of source from the Tropical East Pacific and Tropical Amer-
ica to Temperate South America; the second is a shift of the
distribution of the sink between the Southern Ocean and the
South Indian Ocean with only modest reductions in uncertainty.
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Southern Hemisphere observation site additions in the enhanced
network include Jubany Bay in Antarctica, Cape Point in south-
ern Africa and the southern branch of the high altitude western
Pacific aircraft flights. The flux tower in the Amazon in the con-
tinental extension network makes little difference in either flux
or uncertainty in the aggregated South American regions. The
seasonality of the modeled atmospheric concentration of car-
bon dioxide at this site fits the data poorly before the inversion
and the post-inversion predicted concentration here is the worst
fit of all of the observation sites used. This issue of correctly
modeling the terrestrial carbon flux in the Amazon is partially
addressed by Baker et al. (2008). The poor model fit to the site
observation and the lack of any other observations on the South
American continent likely account for the lack of improvement
in the certainty of estimated fluxes here.

A fully independent solution using this analytic method would
have no off-diagonal entries in the a posteriori covariance matrix.
Here we examine an annually summarized example to illustrate
how well the continental network solution conforms to this ex-
pectation. The a posteriori covariance matrix for 2002 annual
fluxes for the aggregated TransCom regions and the continental
extension network is presented in Fig. 4. Error variances are
reported on the diagonal. The off-diagonal values indicate the

covariances between the annual flux solutions in different re-
gions and, therefore, show the independence of the estimates.
Shaded off-diagonal values, in variance units of (Pg C yr−1)2,
impact the annual uncertainty of the aggregated regions by 0.1
Pg C or more; this cut-off is equivalent to the smallest annual
error variance of the 22 aggregated regions. The largest covari-
ance between ocean regions is slightly larger than –0.01 in units
of variance between the Southern Ocean and the South Indian
Ocean. The largest covariances are between Tropical America
and Temperate South America (–0.37 in units of variance), North
Africa and South Africa (–0.21), Temperate South America and
South Africa (–0.14) and Europe and Boreal Asia (–0.12). The
negative covariances among the Tropical America, Temperate
South America, North Africa and South Africa aggregated re-
gions, bounded by heavy black lines in Fig. 4, indicate that
the estimates for the two continents should not be treated as
independent. The total flux may be constrained, but the parti-
tioning is not certain. Introducing the observation site in South
America, where there were none in the enhanced network, is not
enough to improve the overall continental constraint. In North
America, however, the four added observations reduce the 2002
annual variance for Boreal North America from 0.16 to 0.09
(Pg C yr−1)2, for Temperate North America from 0.33 to 0.17
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(Pg C yr−1)2 and the covariance between them from −0.12 to
−0.05 (Pg C yr−1)2 (bounded by heavy black lines in the lower
left corner of Fig. 4). Rödenbeck et al. (2003a) examined a
posteriori flux errors from the perspective of the correlation co-
efficients of the long-term fluxes for a period in the late 1990s in
their fig. 13, finding several of the same “pair-sum” relationships
that we see here.

3.2. North American results

Figure 5 shows the 2001–2003 mean annual North American
fluxes and uncertainties along with the bordering North Atlantic
and North Pacific ocean regions as well as Europe and Boreal
Asia. Here it is evident that the uncertainty reduction in the
regions with the added sites in the continental extension network
(Eastern Boreal North America, Central Plains and Northeast
in Temperate North America) accounts for nearly all of the
uncertainty reduction in North America seen in Fig. 3. Within
North America, the flux estimates change appreciably only in
the Northeast region with the two added flux towers, unlike
the change in balance between Boreal Asia and Europe when
adding the European mountain top and additional sites in the
eastern Asia. Uncertainty in the regions upstream of the added
observations in North America (for example, Western Boreal
and Pacific Northwest) is not much improved in the continental
extension network.

The mean annual uncertainty reductions, relative to the a priori
specifications (1–σ post / σ prior, expressed as a percent, where σ post

is the 2001–2003 mean annual posterior uncertainty and σ prior

is the annualized prior uncertainty), for the regions in North
and South America are shown in Fig. 6 for the base network
(triangles), enhanced network (diamonds) and continental ex-
tension network (squares). The annualized prior uncertainty and
mean annual posterior uncertainty for each region are also listed
in Table 1. Figure 6 again demonstrates that uncertainty reduc-
tion is achieved in the regions local to the added observations,
a finding consistent with results from grid-scale inversions (e.g.
Peylin et al., 2005; Gourdji et al., 2008; Lauvaux et al., 2008;
Mueller et al., 2008). In regions where there are no observation
sites in any of these three networks (for example, the Subtrop-
ical region within Temperate North America and most regions
in South America), there is no reduction in uncertainty. Intro-
ducing one or two sites in a previously unrepresented region can
result in a significant reduction in uncertainty. The Northeast re-
gion within Temperate North America shows little improvement
in the enhanced network compared to the base network (36%
vs. 34%); adding two flux tower observation sites in the con-
tinental extension network results in an uncertainty reduction
of 70% from the prior uncertainty with a mean annual posterior
uncertainty of 0.25 Pg C yr−1 compared to 0.54 Pg C yr−1 for the
enhanced network. The South American flux tower is on the bor-
der between the Northern and Southern Amazon regions within
Tropical America. The percentage reduction in uncertainty in
the Northern Amazon compared to the prior doubles in the con-
tinental extension network compared to the base and enhanced
networks (16% for the base network, 18% for the enhanced
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Fig. 6. Mean annual uncertainty reduction for 2001–2003 (in per cent)
for North and South American regions for three networks: base
network (right-facing triangles), enhanced network (diamonds), and
continental extension network (squares).

network, 36% for the continental extension). The Southern
Amazon region shows no improvement at all. Parazoo et al.
(2008), using the same transport model and analyzed meteo-
rological fields, found that atmospheric mixing in this region
is dominated by vertical convection rather than the horizontal
transport by synoptic weather systems prevalent in the mid-
latitude continents. It is not surprising, therefore, that one ob-
servation site in South America constrains only the immediate
region.

Regions within North America already partially constrained
by local observations show some improvement, but less than
for the first observation site. The Southwest, Central Plains and
Eastern Boreal regions contain one observation site in the base
network (Niwot Ridge, WKT tall tower and Fraserdale tower,
respectively). Adding the aircraft vertical profile observations at
Carr, Colorado, to the Southwest region in the enhanced network
results in a modest improvement from 40% to 48% from the
prior specification. After adding a flux tower to the Central Plains
region and the Eastern Boreal region in the continental extension
network, the percentage reduction of the uncertainty improves
from 43 to 60% for the Central Plains and from 58 to 64% for
the Eastern Boreal region.

Similar improvements in the covariances can be shown in the
non-aggregated, 47-region 2002 annual covariance matrix for
the continental extension network (not shown). The covariances
among the regions within North America are reduced; the covari-
ance between Eastern Boreal and Northeast Temperate regions
is reduced from –0.06 to –0.02 (Pg C yr−1)2, and the variances
for Central Plains and Northeast are improved [0.11–0.05 (Pg
C yr−1)2 for the Central Plains and 0.30–0.05 (Pg C yr−1)2 for
the northeast]. Covariances between the North American re-
gions and non-North American regions are reduced except for a
negative covariance between Western Boreal North America and
Boreal Asia. Results are more modest in South America, where
the only appreciable improvement is the reduction in the co-
variance between Northern and Southern Amazon regions from
−0.11 to −0.07 (Pg C yr−1)2. Covariances within South America
and between South American and African regions are reduced
but not eliminated. We cannot justify the inversion solution for
the subregions within South America as independent with the
networks tested.

The monthly flux solutions for two Temperate North Amer-
ican regions for the three networks are shown in Fig. 7. The
base network results are shown in blue, the enhanced network in
cyan and the continental extension in red. Dotted lines indicate
the extent of the constraint provided by the prior uncertainty.
Shading represents the a posteriori uncertainty (from the diag-
onal of the posterior covariance matrix) of the solution for the
continental extension network. On the left in Fig. 7 is the Pacific
Northwest region which has no local observation sites in any of
these networks, and is upstream of all the added North American
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observation sites. Other than a correction to the timing of the
seasonal cycle of the terrestrial background flux, there is little
change from the background flux and no difference in the a pos-
terior flux estimate for the three networks tested. The Northeast
region is shown in the right panel of Fig. 7. This region has no
local observations in the base or enhanced networks, and the
two flux towers with well-calibrated CO2 measurements in the
continental extension network. The a posteriori flux estimate
for the continental extension network is smoothed, of smaller
amplitude and reduced uncertainty relative to the prior. Similar
uncertainty reductions that can be attributed to the presence of
local observations is evident in the monthly flux solutions for
Central Plains and Eastern Boreal regions, where the two other
North American flux towers in the continental extension network
are located.

Figure 8 shows the annual variability of the flux solutions
for the continental extension network for the North American
regions. The mean annual flux estimates and uncertainties (in
parentheses) for 2001–2003 in Pg C yr−1 are shown by region in
panel A. The other panels show the results for each of the years
2001–2003. Shading indicates the fractional standard deviation
of the annual flux from the 3-yr mean. For example, the South-
east region has a strong source deviation with severe drought in
summer of 2002 (Waple et al., 2003), but a strong sink anomaly
in the wet summer of 2003 (Levinson and Waple, 2004). The
variability in the Northeast region exhibits the reverse behav-
ior for these 2 yr. The 47-region covariance matrix shows an

annual covariance of −0.01 (Pg C yr−1)2 between these two
regions. The negative covariance, although small, might be an
indication of some dipole behavior between these two regions.
All of the anomalies are within 1 standard deviation of the 3-yr
means.

4. Discussion

4.1. Impact of added measurement sites

The added continental measurement sites contribute to local un-
certainty reduction without undue disruption to the global flux
solution. We choose to use mid-day observations and matching
transport model samples for continental surface sites based on
comparisons of mid-day and all-hours sampling for both the ob-
servations and transport model output. As these mid-day hours
are most likely to represent the desired well-mixed background
state, they are also likely to represent an area much broader than
the immediate vicinity of the observation site. This subsampling
avoids the issue of nocturnal boundary layer representation in the
transport models and driver meteorological data. Representation
error is still possible; choice of site is critical. The competing
roles of multiple sites in the same solution region (e.g. Howland
Forest and Harvard Forest in the Northeast region of Temperate
North America) warrant further research. There are a number
of additional North American flux towers where carbon diox-
ide measurements are now well-calibrated. These present an
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opportunity for improving the uncertainty of the North Amer-
ican carbon balance as determined by atmospheric inversions.
The use of these stations is, however, dependent on the conti-
nuity of the measurement time series, and the degree to which
the site is representative of the area for flux estimation. The in-
version method used here requires continuous observation time
series and an unchanging network. Other methods may be more
amenable to the addition and deletion of observation sites for an
inversion solution for long periods of time.

4.2. Results using an alternative background
terrestrial flux

We used an alternative background terrestrial flux, the CASA
monthly mean flux, to compare the a posteriori results for the
continental extension network with the results using the SiB3
terrestrial flux which has diurnal, monthly and annual variabil-
ity. The results for the 22 aggregated TransCom regions are
documented in Table 3 and as squares in Fig. 9. Ocean region
results are similar, as might be expected. The two background
fluxes have differences in both amplitude and timing of the sea-
sonal cycle in North America. In well-constrained regions, such
as the Northeast Temperate North America, both background
terrestrial fluxes are adjusted to a result that is consistent within
the a posteriori uncertainty. The results for CASA and SiB3 are
less consistent for under-constrained regions; Tropical America
is a good example of this. The sensitivity to the background
fluxes warrants further research.

We have found the model samples from the forward runs
of SiB3 overestimate observed seasonal amplitudes of car-
bon dioxide concentrations by as much as 40% at observation
sites in some northern temperate and boreal regions in North
America. This can be seen in the prior uncertainty ranges (de-
rived from the SiB3 fluxes) in Fig. 7, especially in the Northeast
Temperate North America region. The CASA terrestrial back-
ground flux has smaller annual amplitude in these same regions,
and the modelled seasonal amplitudes are within 10% of the ob-
served amplitudes at the same locations that are overestimated
by SiB3. As can be seen in Fig. 9, the inversion solutions using
the alternative background fluxes are similar in regions that are
well constrained.

4.3. Comparison to published results

The results of this inversion are placed in the context of other
contemporary inversions for the same time period in Fig. 9
and Table 3. Included in the table and figure are the SiB3
and CASA versions of our experiment (squares in Fig. 9), Car-
bonTracker 2008 (circles) from http://carbontracker.noaa.gov,
model mean results (diamonds) from the 95-site network in
the TransCom Interannual Variability (IAV) network sensitivity
study (Gurney et al., 2008), and the NASA GSFC PCTM model
results (triangles) from the same IAV study. All results are for
2001–2003. The uncertainties shown in Table 3 and Fig. 9 for
the TransCom IAV model mean are the total error including the
model spread. The 95-site network used in the TransCom IAV
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network sensitivity study is similar to our enhanced network,
except that the GLOBALVIEW smoothed data product is used
for observation data and colocated measurement programs are
not excluded. In Fig. 9 we show inversion solutions using differ-
ent data sources, different transport models and meteorological
driver data, different background ocean and terrestrial fluxes, and
different inversion methods. One very obvious difference in the
partitioning results in Fig. 9 is in the greater magnitude of the un-
certainties estimated by CarbonTracker. This is a methodological
difference and an attempt to incorporate transport model error
more comprehensively (Peters et al., 2007) when using only one
transport model. Other studies have suggested that the transport
model used and the uneven and sparse spatial distribution of ob-
servation sites are equal contributors to the differences in results
(Gurney et al., 2002; Rödenbeck et al., 2003a,b; Gurney et al.,
2008). The other a posteriori uncertainties shown in Fig. 9 are
derived analytically (with the addition of model spread for the
TransCom-IAV model mean). In general our SiB3 and CASA
results, which share the same transport, network composition
and data selection protocol, are much closer to each other than
to the other inversions in this comparison.

Figure 9 shows that the TransCom IAV-PCTM result tracks
very closely to the TransCom IAV model mean except in the
partitioning between North America and Extratropical Eurasia
where the TransCom IAV-PCTM more closely resembles the re-
sults of our study. Our results in the partitioning between Global
Land and Global Ocean are more like CarbonTracker than the
TransCom IAV model mean and TransCom IAV-PCTM results
with greater land sink than ocean sink. All of the inversion re-
sults report a net source for the combined Tropical and Southern
Land.

In contrast to CarbonTracker, however, our results place more
of the northern land sink in North America than in extratropical
Eurasia (Europe, Boreal Asia and Temperate Asia) in agreement
with the TransCom IAV model mean and TransCom IAV-PCTM.
Only the CarbonTracker results in Fig. 9 are in line with an
independent estimate of -0.50 Pg C/yr (not including fossil fuel
emissions) (CCSP, 2007) for North America. This illustrates
again that there is not yet a convergence in carbon flux estimates
between top-down and bottom-up methods. Our results differ
from all of the other examples here in the partitioning of flux
between Boreal and Temperate North America; our results show
Boreal North America as approximately neutral with most of the
sink in Temperate North America.

4.4. Adjustments of the background ocean fluxes

Our inversion results are generally consistent in zonal distri-
bution with the ocean air-sea flux estimates of Takahashi et al.
(2002), which we use as our background ocean flux. Our flux so-
lution reduces the net global ocean sink from 1.6 Pg C to 1.2 Pg
C annually, with smaller sinks in temperate waters and smaller
sources in the tropics. Our experiment reduces the Southern

Ocean sink specified by Takahashi et al. (2002), but not by as
much as CarbonTracker (see Table 3) or the update to these air-
sea fluxes (Takahashi et al., 2009) for the climatologic year 2000,
which shows little or no net annual flux in the Southern Ocean
due to offsetting effects of biological drawdown and upwelling
of carbon-rich waters.

4.5. Subcontinental flux partitioning

The relatively large (with respect to CarbonTracker) Temperate
North America terrestrial sink found in this study is not evenly
distributed across the continent. Table 1 and Fig. 5b) suggest that
the northeastern U.S. is responsible for more than half of this
sink. The additional data constraint provided by the flux tower
mixing ratio time series suggests that, within the limits of the un-
certainties assessed here, this finding is significant. It is possible
that this could be the result of transport errors, network biases,
or other systematic errors that this study is not able to resolve. It
is also notable that in Europe, the other relatively densely instru-
mented continent, the North Central region presents a dominant
sink and the Eastern region a source, both significant with respect
to the bounds of our uncertainty estimates. These subcontinental
results show the promise of enhanced continental networks and,
while preliminary, deserve further study.

4.6. Uses of the posterior covariance matrix

We have used the analytic product of the inversion method,
the a posteriori covariance matrix, in three different ways in this
experiment. We have used the magnitudes of the matrix elements
as an indication of the uncertainty of the flux estimates. We have
also used a change in magnitude as an indication of the value of
adding sites to the network. Finally, we have used the a posteriori
covariance to assess the spatial correlations between regions in
the flux solutions. As we noted in Section 2.1, the accuracy of
the a posteriori covariance is limited by the assumptions inherent
in the a priori flux uncertainty and model-data errors, both of
which are difficult to test. The magnitudes of the a posteriori
uncertainties, as reported in Tables 1 and 3 and in the figures, are
dependent upon the accuracy of our assumed prior uncertainties.
The other uses of the a posteriori covariance should, however,
be largely independent of the magnitude of the prior uncertainty
estimates and thus more robust. CarbonTracker (Peters et al.,
2007) includes a broader uncertainty assessment including some
analysis of uncertainty caused by atmospheric transport. This
may explain the larger error bounds in the CarbonTracker flux
estimates.

5. Conclusions

We have shown the value of additional continental observations
in a standard Bayesian global atmospheric inversion. We have
removed some of the methodological simplifications used in
previous Bayesian synthesis inversions by using transport fields
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appropriate to the years of the observation data, by using real
observation data, and by explicit inclusion of biomass burning
emissions. We have also incorporated careful examination of
the a posteriori covariance in the evaluation of the quality of the
inversion output. Specific findings include the following:

1. Using a judicious combination of region size and location
of additional continental observation sites, the a posteriori flux
uncertainty and region-to-region covariance are significantly re-
duced.

2. Flux towers are typically sites in representative ecosys-
tems and have existing measurement infrastructure. With some
additional instrumentation and a careful calibration of carbon
dioxide concentrations to global standards, these sites can be
used in the global measurement network used for atmospheric
inversions. With the extent of the current global flux network,
there is a major opportunity for improved coverage in the ob-
servation networks used for global and regional atmospheric
inversions.

3. The transport model and analysed meteorological fields
appear to have more impact on our flux estimates than the
added observation sites or the background terrestrial flux. For
the well-constrained aggregated region of North America, the
TransCom-IAV PCTM results are more like our findings than
CarbonTracker. Transport uncertainty is an important problem
that this study does not address.

4. We confirm the findings of other researchers (e.g. Baker
et al., 2006; Jacobson et al., 2007a,b) that the tropical and south-
ern land regions are underconstrained to the extent that the inver-
sion source/sink estimates for these regions cannot be considered
independently. The observation networks tested in this experi-
ment do not improve this situation. An increase in observation
density, for example from satellite observations, is required to
change this situation.

5. In our experiment, we find that the Northeast subregion
of Temperate North America dominates the North American
sink. While this is a preliminary finding, based on our limited
experiment, it does suggest that increasing both the coverage
of the observation network and the number of regions in the
inversion, can help to localize critical source and sink regions
for the global carbon budget.
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Takigawa, M. and co-authors. 2008. TransCom model simulations
of hourly atmospheric CO2: Analysis of synoptic-scale variations
for the period 2002–2003. Global Biogeochem. Cycles 22, GB4013.
doi:10.1029/2007GB003081.

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J.
and co-authors. 2007. An atmospheric perspective on North American
carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA
104, 18925–18930. doi:10.1073/pnas.0708986104.

Peylin, P., Rayner, P. J., Bousquet, P., Carouge, C., Hourdin, F. and co-
authors. 2005. Daily CO2 flux estimates over Europe from continuous
atmospheric measurements: 1, inverse methodology. Atmos. Chem.
Phys. 5, 3173–3186.

Potter, C., Klooster, S., Steinbach, M., Tan, P., Kumar, V. and co-authors.
2003. Global teleconnections of climate to terrestrial carbon flux. J.
Geophys. Res. 108, 4556. doi:10.1029/2002JD002979.

Potter, C., Klooster, S., Huete, A. and Genovese, V. 2007. Terres-
trial carbon sinks for the United States predicted from MODIS
satellite data and ecosystem modeling. Earth Interact. 11, 11–013.
doi:10.1175/EI228.1.

Randerson, J. T., Thompson, M. V., Conway, T. J., Fung, I. Y. and
Field, C. B. 1997. The contribution of terrestrial sources and sinks to
trends in the seasonal cycle of atmospheric carbon dioxide. Global
Biogeochem. Cycles 11, 535–560.

Rayner, P. J., Enting, I. G., Francey, R. J. and Langenfelds, R. 1999.
Reconstructing the recent carbon cycle from atmospheric CO2, δ13C
and O2/N2 observations. Tellus 51B, 213–232.
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ABSTRACT
Human conversion of natural ecosystems to croplands modifies not only the exchange of water and energy between the
surface and the atmosphere, but also carbon fluxes. To investigate the impacts of crops on carbon fluxes and resulting
atmospheric CO2 concentrations in the mid-continent region of the United States, we coupled a crop-specific phenology
and physiology scheme for corn, soybean and wheat to the coupled ecosystem–atmosphere model SiB3–RAMS. Using
SiBcrop–RAMS improved carbon fluxes at the local scale and had regional impacts, decreasing the spring uptake and
increasing the summer uptake over the mid-continent. The altered fluxes changed the mid-continent atmospheric CO2

concentration field at 120 m compared to simulations without crops: concentrations increased in May and decreased
>20 ppm during July and August, summer diurnal cycle amplitudes increased, synoptic variability correlations improved
and the gradient across the mid-continent region increased. These effects combined to reduce the squared differences
between the model and high-precision tower CO2 concentrations by 20%. Synoptic transport of the large-scale N–S
gradient caused significant day-to-day variability in concentration differences measured between the towers. This
simulation study shows that carbon exchange between crops and the atmosphere significantly impacts regional CO2

fluxes and concentrations.

1. Introduction

The conversion of natural ecosystems to croplands is one of
the most direct manifestations of human activity within the
biosphere (Ramankutty and Foley, 1998). Land use and land
cover change affect the phenology of the vegetation, modify
biophysical properties of the land surface (e.g. surface rough-
ness and albedo) and alter biogeochemical cycles (Betts, 2005).
Modelling studies have shown that these perturbations change
the weather and climate on regional and global scales (Copeland
et al., 1996; Bonan, 1997; Lawrence and Slingo, 2004; Osborne
et al., 2007).

Although the conversion of forests and grasslands to agri-
cultural land initially leads to a net release of carbon to the
atmosphere (Houghton, 2003), the role of croplands on the car-
bon cycle remains uncertain. Studies over Europe suggest that on
annual time-scales croplands are net carbon sources due to soil
carbon loss, although these estimates are sensitive to land his-

∗Corresponding author.
e-mail: katherine.corbin@csiro.au
DOI: 10.1111/j.1600-0889.2010.00485.x

tory, soil properties and management practices (Vleeshouwers
and Verhagen, 2002; Janssens et al., 2003). On the global scale,
Bondeau et al. (2007) found that including crops reduces the
carbon sink in the land biosphere, as compared with simulations
of the potential natural vegetation only.

To investigate regional carbon fluxes over a densely culti-
vated region, the North American Carbon Program (NACP)
launched the Mid-Continent Intensive (MCI) Campaign (Ogle
et al., 2006). The MCI region is centred over the Midwestern
United States (Fig. 1), and the primary focus of the campaign
is to compare and reconcile regional fluxes on hourly to annual
time scales from top-down atmospheric budgets with bottom-up
ecosystem model-based inventories. The MCI campaign funded
dense inventory and flux measurements throughout the summer
and fall of 2007. The region hosts networks of eddy-covariance
flux towers, several long-term agricultural experimental sites
with time series of carbon stocks, forestry data collected through
the U.S. Department of Agriculture (USDA) Forest and Inven-
tory Analysis (FIA) program, annual crop yield data collected
by USDA National Agricultural Statistics Service (NASS) and
fossil fuel emissions estimates from the Environmental Protec-
tion Agency (EPA) Fuel Emission Statistics. In addition to local
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Fig. 1. Grid setup for the SiB3–RAMS
simulations. (Top panel) The coarse domain
and the dominant vegetation type. The
interior grid, corresponding to the MCI
region, is outlined on the coarse domain.
(Bottom left panel) The fractional coverage
of corn in the nested grid. Red tower labels
indicate the continuous atmospheric CO2

sites, and black tower labels indicate
AmeriFlux sites. (Bottom right panel) The
fractional coverage of soybean in the nested
grid.

flux measurements and crop yields, high-precision atmospheric
CO2 concentrations are sampled at seven communications tow-
ers throughout the region, beginning spring 2007 (Richardson
et al., 2009).

The dense network of data from the MCI can be used for
a variety of studies not only to investigate carbon fluxes be-
tween the land and atmosphere, but also to enhance our knowl-
edge of the carbon cycle. Regional models provide a way to
quantitatively map sources and sinks of CO2 using a variety of
different observations (i.e. soil maps, vegetation maps, topog-
raphy, meteorology). Model simulations compared with field
measurements from the MCI campaign will lead to the advance-
ment of our understanding of the processes and mechanisms
driving the variability in these fields. In addition to providing
atmospheric inversions with initial flux estimates that include
all known mechanisms, coupled ecosystem–atmosphere models
can help interpret the high-frequency variability in atmospheric
CO2 concentrations. Because CO2 concentrations contain in-
formation about all sources and sinks of carbon, understanding
the mechanisms driving the CO2 variability will help us better
predict carbon fluxes.

To evaluate and analyse atmospheric CO2 concentrations, it is
essential that carbon fluxes be modelled as accurately as possible
using all available information. Due to physiological and phe-

nological differences from natural ecosystems, crops strongly
modify both the seasonality and magnitude of carbon fluxes by
having shorter growing seasons with more intense drawdown (de
Noblet et al., 2004; Gervois et al., 2004; Lokupitiya et al., 2009);
and land surface models typically do not represent crop fluxes
well due to their short but vigorous photosynthetic uptake. Tra-
ditionally, models use remotely sensed vegetation parameters,
such as the normalized difference vegetation index (NDVI), leaf-
area index (LAI) and the fraction of photosynthetically active
radiation (FPAR) to estimate carbon dynamics; however, using
satellite data does not accurately capture planting, growth, and
harvest events of crops due to temporal and spatial compositing.
Remotely sensed products use temporal composites, generally
8-day to monthly, to minimize cloud contamination. Because
the LAI and FPAR for crops rapidly changes, using these coarse
time resolutions do not accurately capture the magnitude of the
crop growth and unrealistically extend the timing of the growing
season. Spatial compositing also occurs and leads to misrepre-
sentations between the data and the actual field conditions.

To better predict carbon exchanges for crops, Lokupitiya et al.
(2009) developed crop-specific phenology and physiology sub-
models for corn (maize), soybean and wheat and coupled them
to the Simple Biosphere Model (SiBcrop). The sub-models re-
place remotely sensed leaf area index (LAI) and the FPAR as
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IMPACT OF CROPS ON CO2 FLUXES AND ATMOSPHERIC CONCENTRATIONS 3

used in SiB for estimating carbon dynamics. Using a phono-
logically based model substantially improved the prediction of
LAI for crops, and the use of crop-specific physiology increased
the carbon fluxes for a specified LAI to better predict the net
ecosystem exchange (NEE) as compared with observed data at
flux tower sites in the U.S. mid-continent region (Lokupitiya
et al., 2009).

To predict regional-scale carbon exchanges and the result-
ing atmospheric CO2 concentrations, we coupled the corn, soy-
bean and wheat sub-models to the ecosystem–atmosphere model
SiB3–RAMS. In this study, we will investigate the impact of
crops on atmospheric CO2 concentrations. To evaluate simu-
lated carbon fluxes, we will compare modelled NEE to eddy-
covariance derived NEE from flux towers. We will also evaluate
atmospheric CO2 concentrations by comparing the modelled
CO2 field to continuous concentrations sampled on towers at
30 and 120 m during the MCI campaign. In addition, we will
examine the cause of the variability in the CO2 gradient between
the towers.

2. Methods

2.1. Model: SiB3–RAMS

The base model used in this study is the Simple Biosphere
Model Version 3 (SiB3; Baker and Denning, 2008) coupled
to the Brazilian version of the Colorado State Regional Atmo-
spheric Modelling System (RAMS; Frietas et al., 2005). The
coupled model, SiB3–RAMS, has been evaluated and used in
a variety of carbon budget studies. Denning et al. (2003) used
the coupled model to investigate the influence of ecosystem
fluxes on atmospheric CO2 concentrations in Wisconsin; and in
a companion paper, Nicholls et al. (2004) showed that katabatic
winds, vertical wind shear and circulations in the vicinity of
lakes caused atmospheric CO2 variations. Lu et al. (2005) used
the model to investigate mesoscale circulations and atmospheric
CO2 variability in South America. Wang et al. (2007) inves-
tigated synoptic variability in atmospheric CO2 concentrations
over North America; and Corbin et al. (2008) used SiB–RAMS
to evaluate atmospheric CO2 spatial and temporal variability.
Throughout these studies, various SiB–RAMS modelled fields
have been evaluated against observations, including tempera-
ture, wind speed, wind direction, radiation, water vapour mix-
ing ratio, latent heat, sensible heat, NEE and atmospheric CO2

concentrations. Because this is a model comparison study to in-
vestigate the impact of crops on carbon fluxes and atmospheric
concentrations, we focus on NEE and atmospheric CO2 concen-
trations, referring the reader to these previous studies for further
model evaluation.

Traditionally, SiB used remotely sensed NDVI to calculate
LAI and FPAR; however, due to both spatial and temporal com-
positing, these satellite data do not accurately capture the timing
of planting and harvest events and underestimate the maximum

LAI and FPAR values for crops. To more accurately simulate
croplands, we coupled SiB3–RAMS to the crop module devel-
oped by Lokupitiya et al. (2009). The crop module explicitly
calculates the LAI and FPAR for corn, soy and wheat. These
simulated values replace remotely sensed data for these vege-
tation classifications. Phenology events and growth stages for
crops were determined by the growing degree days and the
number of days since planting, and the crop module allocated
photosynthetic carbon to four different plant pools depending on
phenological development. The daily carbon allocation to leaves
was used to update LAI, which was then used to calculate the
NEE.

Q1

SiB3–RAMS utilizes a variety of data sets. All the data are
for 2007 and are re-gridded from their native resolutions to
the SiB3–RAMS domain. The land cover classification is de-
rived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) data with 1 km horizontal resolution, which is dis-
tributed by the Land Processes Distributed Active Archive Cen-
ter (LP DAAC) located at the U.S. Geological Survey (USGS)
Earth Resources Observation and Science (EROS) Center
(lpdaac.usgs.gov). The land cover is converted from the Uni-
versity of Maryland (UMD) classification scheme to SiB biome
types. Corn, soybean and wheat are integrated into the vege-
tation map based on county-level ground-based data from the
National Agricultural Statistics Service (NASS) and the Census
of Agriculture (AgCensus) (Lokupitiya et al., 2007).

Rather than calculating LAI and FPAR from remotely sensed
NDVI, SiB3–RAMS uses direct estimates of these parameters
from satellite data. Both LAI and FPAR are 8-day composites
derived from MODIS 1-km resolution data, and these products
are provided by the Numerical Terradynamics Simulation Group
at the University of Montana (Zhao et al., 2005). Due to the
minimal land cover classification information provided with the
data, the 1-km resolution data are combined to provide one
estimate of LAI and FPAR per grid cell. For grid cells that
include crops, the LAI and FPAR values for corn, soybean and
wheat are replaced by calculated values from the crop module.

The soil classification is derived from a 5-min resolution soil
type map by the International Geosphere Biosphere Programme
(IGBP) (IGBP, 2000). Meteorological fields are initialized and
nudged to the National Centers for Environmental Prediction
(NCEP) North American Regional Reanalysis (NARR) mete-
orological analyses, which covers the North American domain
with a 32-km horizontal resolution, 3-h temporal resolution and
50-hPa vertical resolution (Mesinger et al., 2006). The NCEP
NARR data are provided by the NOAA/OAR/ESRL Physical
Sciences Division located in Boulder, CO, USA, from their web
site at http://www.esrl.noaa.gov/psd/. Fossil fuel emissions are
prescribed from the high-resolution Vulcan fossil fuel inventory
(Gurney et al., 2009). Since the Vulcan emissions represent 2002,
they are scaled to match the total estimated 2007 emissions from
the Energy Information Administration (EIA, 2007), and these
fluxes are added to the first model level. Initial values for carbon
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4 K. D. CORBIN ET AL.

pools, soil moisture and other prognostic variables are calculated
for every grid cell from a 10-yr offline SiBcrop simulation using
NARR driver data from 1997 to 2007. The initial atmospheric
CO2 concentration field and the lateral boundary concentrations
are set and nudged to 3-hourly global CO2 concentrations on
a 1.25◦ × 1◦ grid from the Parameterized Chemical Transport
Model (PCTM; Parazoo et al., 2008).

2.2. Case descriptions

Three SiB3–RAMS simulations over North America are per-
formed for 1 May 2007 through 31 August 2007. The coarse
grid for all cases has 200 × 120 grid points with 40-km hori-
zontal grid increments, 46 vertical levels up to 24 km and a 90 s
time-step. To capture subgrid-scale variability in land cover,
SiB3–RAMS used three vegetation patches per grid cell. The
dominant vegetation cover for the coarse grid is shown in Fig. 1
(top panel). The landcover in the MCI region is dominated by
corn, soybean and C3 grasses/agriculture.

The first case, which will be referred to as BASE, uses the
original SiB3–RAMS (without the crop module) and resets all
the corn, soybean and wheat biomes to the generic agricul-
ture/grassland vegetation type. The second case, CROP, uses the
crop phenology module to replace the remotely sensed LAI and
FPAR for corn, soybean and wheat. The model also uses crop-
specific physiology to replace the generic grassland/agricultural
parameters. The third case, CROPN, uses the crop module and
includes a nested grid over the MCI region to capture the exten-
sive corn and soybean cover (Fig. 1, bottom panel). The hori-
zontal grid spacing for the interior grid is 10 km.

2.3. Observations

Because SiB3–RAMS calculates both carbon fluxes and concen-
trations, we will evaluate the model performance using measure-
ments of both eddy-covariance derived NEE and CO2 concen-
trations. For carbon fluxes, eddy-covariance derived NEE data
for 2007 are available at three AmeriFlux towers in the mid-
continent region: the Mead Rainfed site in Nebraska (MEAD;
41.12◦N, 96.44◦W; Verma et al., 2005), the Rosemount G21 con-
ventional management corn/soybean rotation site in Minnesota
(ROSE; 44.71◦N, 93.09◦W; Griffis et al., 2008) and the Fermi
Agricultural conventional tillage corn/soybean rotation site in
Illinois (FL; 41.86◦N, 88.22◦W; Matamala et al., 2008; Xiao
et al., 2008). At all towers, the NEE estimates are derived from
measurements of carbon flux and storage, and we use the gap-
filled data products. Corn grew at the Mead and Rosemount sites
during the summer of 2007, while soybean grew at the Fermi
site. The data were obtained from FLUXNET and are available
on-line at http://www.fluxnet.ornl.gov (Baldocchi, 2006).

To compare these flux measurements to SiB3–RAMS fluxes,
we sample the model at the grid-cell including the tower. Because
SiB3–RAMS has three patches per grid cell, only the patch with

the corresponding vegetation type is used for comparison (i.e.
grass/agriculture for BASE and either corn or soy for CROP).
For the CROP and CROPN cases, the fluxes at the towers are
nearly identical despite the difference in horizontal resolution,
and we only present the results from the CROPN case.

To evaluate modelled CO2 concentrations, we compare simu-
lated concentrations to continuous tower measurements. As part
of the MCI campaign, Pennsylvania State University (PSU) col-
lected continuous atmospheric CO2 concentrations on five com-
munications towers and in the mid-continent region (Richardson
et al., 2009). These measurements were sampled using cav-
ity ring-down spectroscopy instruments from Picarro (Crosson,
2008). In addition, PSU sampled continuous, well-calibrated
CO2 concentrations on the AmeriFlux tower at Missouri Ozarks,
which is located in the transitional zone between the central hard-
wood region and the central agricultural region of the U.S. Atmo-
spheric CO2 concentrations for 2007 were also collected at West
Branch, Iowa (WBI) by the National Oceanic and Atmospheric
Administration (NOAA) Global Monitoring Division (GMD).
High-accuracy CO2 concentrations were sampled at WBI using
a non-dispersive infrared spectroscopy CO2 analyser, and the
data are publicly available at http://esrl.noaa.gov/gmd (Andrews
et al., 2009). The reference names and letters, locations and sam-
pling heights at all six towers are displayed in Table 1 and Fig. 1,
bottom panel. Nearly all the towers measure CO2 concentrations
both near the surface and in the mid-troposphere, except the
Missouri Ozark tower, which only collects samples at 30 m. We
will compare measurements sampled closest to 30-and 120 m at
each tower to model results from the matching location at the
same vertical level. To reconcile an offset, the four-month mean
modelled atmospheric CO2 concentrations were corrected to
match the four-month mean observed CO2 concentration among
the towers.

3. Results

3.1. Crop impacts on NEE

Simulating corn and soybean explicitly using crop-specific phys-
iology and phenology rather than using the generic agricul-
ture/grassland biome significantly alters both the timing and the
magnitude of NEE (Fig. 2). In the BASE case, the NEE is similar
at all three sites, with a diurnal mean NEE of ∼3 µmol m−2 s−1

throughout the summer. The NEE remains relatively constant
due to the remotely sensed LAI and FPAR for this time period,
as the satellite data has reduced seasonality due to both tem-
poral and spatial compositing. In addition, re-gridding the data
to the SiB3–RAMS domain causes further smoothing. Because
the remotely sensed vegetation data associated with the LAI and
FPAR has limited land cover classifications and does not contain
crops, all the satellite pixels within a SiB3–RAMS grid cell are
included to create a mean value. Because crops have a much
shorter, more intense growing season than natural vegetation,
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IMPACT OF CROPS ON CO2 FLUXES AND ATMOSPHERIC CONCENTRATIONS 5

Table 1. Reference name, location and sampling height for the towers measuring
continuous atmospheric CO2 concentrations in the MCI region

Reference Abbreviation Site Latitude Longitude Sampling heights

A MEAD Mead, NE 41.14◦N 96.46◦W 30/122 m
B RL Round Lake, MN 43.53◦N 95.41◦W 30/110 m
C CEN Centerville, IA 40.79◦N 92.88◦W 30/110 m
D WBI West Branch, IA 41.73◦N 91.35◦W 31/99/379 m
E GV Galesville, WI 44.09◦N 91.34◦W 30/122 m
F KEW Kewanee, IL 41.28◦N 89.97◦W 30/140 m
G MOZ Missouri Ozark, MO 38.74◦N 92.20◦W 30 m
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Fig. 2. Diurnal mean net ecosystem exchange (NEE) at the Mead site
(top panel), the Rosemount G21 site (middle panel) and the Fermi site
(bottom panel). Observations are solid black, modelled NEE from the
BASE simulation is dark grey solid dot, and modelled NEE from the
CROPN simulation is dashed grey.

averaging over all satellite pixels further lengthens the growing
season and reduces the amplitude of the seasonality in LAI and
FPAR. These temporal and spatial compositing effects combine
to yield relatively constant NEE from May to August.

In the simulations with crops, the NEE varies between sites
and more closely matches the observations. Over the two corn
sites (MEAD and ROSE), the NEE remains small until the be-
ginning of June when the corn begins to grow rapidly. The NEE
uptake rapidly increases through June, reaching maximum daily
carbon uptake throughout July in both the eddy-covariance de-
rived NEE estimates and the simulations by the crop model. The
uptake then decreases throughout August; however, at the Rose-
mount site the carbon uptake in the model does not decrease as
rapidly as seen in the observations.

Compared with corn, soybean starts to grow later in the year
and assimilates less carbon (FL; Fig. 2, bottom panel). At the
soybean site, the crop module captures the minimal drawdown
from May until mid-June, the rapid increase in uptake throughout
late June and July, and the decrease in uptake in late August.
Modelling corn and soy explicitly yields a shorter, more intense
growing season than using natural ecosystems to represent crops,
which better represents the eddy-covariance derived fluxes at
both corn and soybean sites.

Atmospheric CO2 concentrations are influenced not only by
local carbon fluxes, but also by more distant fluxes through at-
mospheric mixing and transport. Because the MCI region is
located in the middle of the United States, it is important to
understand the fluxes over the entire country. The mean spring
(May) and summer (JJA) NEE from the CROP simulation are
displayed in Fig. 3 (left panel). In May of 2007, the majority of
the country is taking up carbon at the onset of the growing sea-
son, except heavily cultivated areas including the MCI region.
Since corn and soybean have not started growing, the central
United States is neutral to a slight source of carbon due to bare
fields at these locations. During the summer of 2007, the model
shows that the southeastern United States is a source of CO2.
Photosynthesis is severely reduced due primarily to tempera-
ture and humidity stress. During the daytime, high temperatures
significantly above optimal conditions decrease the assimilation
while enhancing the respiration, and the dry atmospheric con-
ditions create a vapour pressure deficit which further restricts
carbon uptake. According to the National Climatic Data Center,
the summer of 2007 was the sixth warmest for the United States
in the past 113 yr, with temperatures being the highest in the
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Fig. 3. (Top left panel) Mean May NEE
from the CROPN simulation. (Bottom left
panel) Mean summertime
(June/July/August) NEE from the CROPN
simulation. (Top right panel) Mean May
NEE differences between the BASE and
CROPN simulations (CROPN–BASE).
(Bottom right panel) Mean summertime
NEE differences.

southeast and in the west. The southeastern United States expe-
rienced a heat wave in August, breaking over 70 records for all-
time high temperatures and for the most days above 32 ◦C, and
the 3-month Standardized Precipitation Index for June through
August 2007 shows that the southeastern United States was ex-
ceptionally dry (National Oceanic and Atmospheric Adminis-
tration National Climatic Data Center; http://lwf.ncdc.noaa.gov/
climate-monitoring/index.php). Central California was also very
hot and moderately dry according to the Climatic Data Center,
and this region is also a summer source of CO2 due to tem-
perature and humidity stress. The northern half of the United
States and Canada are summer sinks of carbon. The MCI region
is a particularly large summer sink, with some heavily culti-
vated regions taking up more than 8 µmol m−2 s−1 carbon on
average.

Simulating crops alters the modelled NEE across the entire
MCI region (Fig. 3, right panel). In May, the CROPN case has
reduced monthly mean uptake over the MCI and Midwest re-
gions compared to the BASE simulation, with mean differences
of ∼1–3 µmol m−2 s−1. These differences are caused by the lack
of uptake in corn and soybean during this month while the crops
are sown as compared with the BASE case, which has photo-
synthesizing natural vegetation. A few individual grid cells have
enhanced uptake over the central United States, and these pixels
correspond to wheat crops that are nearing maturity after being
planted in the winter. The mean May fluxes over the MCI region
do not change between the CROP and CROPN simulations.

In the summer, modelling crops explicitly enhances the
uptake over the MCI region, with differences greater than
5 µmol m−2 s−1 in the seasonal average. The enhanced sum-
mer uptake from including crops is due to the intensity of as-

similation by both corn and soybean compared with the basic
agricultural and natural grassland fluxes. Simulating corn and
soybean rather than generic agriculture has the largest impact
on the NEE, as the majority of the summer difference is seen
between the CROP and BASE cases. Adding the nested grid con-
tributes an additional ∼1–2 µmol m−2 s−1 to the mean summer
sink.

3.2. Crop impacts on atmospheric CO2 concentrations

Mean atmospheric CO2 concentrations at 120 m in the CROPN
simulation reflect the 2007 NEE distribution (Fig. 4, left panel).
In May, concentrations are lower in the southeast, central United
States, and eastern Canada compared to higher concentrations
in the west and the MCI region. In contrast, summer (JJA) con-
centrations are high over the southeast, where the region is a
source of carbon, whereas lower concentrations exist over the
northern United States and Canada, where the vegetation is a
sink. High concentrations appear over southern California and
the east coast from fossil fuel emissions. The high southern and
eastern concentrations and low northern concentrations create a
large-scale horizontal gradient in atmospheric CO2 concentra-
tions, with near-surface differences at 120 m greater than 20 ppm
across the central states just to the south of the MCI region.

Including crops causes significant, spatially coherent changes
in the 120 m atmospheric CO2 concentrations (Fig. 4, right
panel). The CROPN simulation has higher concentrations over
the MCI region in May compared to the BASE case. The in-
creased concentrations occur due to the lack of uptake over
croplands before planting, and the May differences between the
CROP and CROPN simulations are minimal (<1 ppm). In the
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Fig. 4. (Top left panel) Mean May
atmospheric CO2 concentrations at 120 m
from the CROPN simulation. (Bottom left
panel) Mean summer (JJA) atmospheric CO2

concentrations at 120 m from the CROPN
simulation. (Top right panel) Mean May
120 m CO2 concentration differences
between BASE and CROPN
(CROPN–BASE). (Bottom panel) Mean
summer (JJA) 120 m CO2 concentration
differences.

summer, the CROPN simulation has significantly lower concen-
trations than the BASE case. Maximum differences occur in July,
when 120 m concentration differences are greater than 15 ppm.
Approximately, half of the net differences seen between the
CROPN and BASE cases are due to adding crops on the coarse
domain, the other half are due to including the nested grid over
the MCI region. Throughout the summer, the influence of crops
extends to Canada due to atmospheric transport, although the
magnitude of the differences decreases with increasing distance
from the MCI region.

The impact of crops on atmospheric CO2 concentrations can
be quantitatively assessed by evaluating the concentrations at
the seven towers in the MCI region. The root mean square errors
(RMSE) between the full time-series of tower observations and
the SiB3-RAMS simulations are shown in Table 2. At 120 m,

including the crop module lowered the RMSE at all towers. In-
cluding crops on the coarse domain caused the largest reduction,
while increasing the spatial resolution to capture the extensive
crop coverage further reduced the errors. The RMSE reduction
is more than 25% at Round Lake and Kewanee, the two towers
with the greatest coverage of corn and soybean; however, the
error reduction at the Galesville tower is minimal. Overall, the
mean RMSE at 120 m for the CROPN simulation is approxi-
mately 20% lower (2.4 ppm) than that for the BASE case. Model
errors near the surface (30 m) are higher than those at 120 m,
and the improvements in the CROP and CROPN simulations are
less significant, except at WBI where the improvement is larger
near the surface. The mean RMSE for the CROPN simulation
is approximately 13% lower (2.4 ppm) than the BASE simula-
tion, although the errors at both Mead and Galesville increase

Table 2. Root mean square errors (RMSE), in ppm, using the complete time series

RMSE at 120 m (ppm) RMSE at 30 m (ppm)

Site BASE CROP CROPN % Error reduction BASE CROP CROPN % Error reduction

MEAD 12.5 11.6 11.1 12% 14.5 15.7 15.5 −7%
RL 14.1 10.5 10.1 28% 16.4 13.7 13.2 20%
CEN 15.2 12.6 11.9 22% 16.2 15.0 14.2 13%
WBI 17.5 14.7 14.0 20% 26.0 27.9 18.5 29%
GV 13.0 12.7 12.7 3% 19.6 20.4 20.5 −5%
KEW 15.8 13.1 11.4 28% 17.5 17.3 13.8 21%
MOZ – – – – 20.3 19.0 17.8 14%

Note: The left-hand columns show the errors at 120 m, and the right-hand columns display the errors at 30 m. The
errors for the BASE, CROP and CROPN simulations are shown at each tower for both vertical levels, as is the
percent error reduction between the BASE and CROPN simulations.
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slightly when crops are modelled. The net error reductions show
that including crops substantially improves the SIB3-RAMS
simulations, particularly at the locations in heavily cultivated
areas.

The improvement in the atmospheric CO2 concentrations is
caused by changes in the spring and summer drawdown, the
diurnal cycle, and synoptic variability. Focusing on the Kewa-
nee tower, which has the largest percentage of crop coverage,
mid-afternoon mean concentrations and a ten-day mid-July time-
series from both the tower CO2 observations and all three model
simulations are shown in Fig. 5. The BASE case does not capture
the seasonality of the concentrations, with lower than observed
CO2 concentrations in May and June (>10 ppm differences)
and higher values in July and August (>15 ppm differences).
Simulating crops more closely matches the spring and summer
drawdown by increasing the May concentrations and decreas-

KEW Mid-Afternoon Mean
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Fig. 5. (Top panel) Time-series of the mean mid-afternoon (12 p.m.–6
p.m.) atmospheric CO2 concentrations at 120 m for the Kewanee tower,
which is the tower with the greatest corn and soybean coverage.
Observations are solid black, modelled CO2 from the BASE simulation
is dark grey solid dot, modelled CO2 from the CROP simulation is grey
dot and modelled CO2 from the CROPN simulation is dashed grey.
(Bottom panel) Mid-July 120 m time-series at the Kewanee tower.

ing the mid-summer concentrations. Coarsely simulating crops
helps to capture the seasonality, while modelling the region at
higher resolution leads to further improvement. Including crops
improves the synoptic variability at Kewanee, as specific events
are captured in both the CROP and CROPN cases. The diurnal
cycle also matches the observations more closely in the runs
with crops, as the BASE simulation tends to underestimate the
amplitude of the diurnal cycle. Improved summer drawdown
and diurnal and synoptic variability all combine to cause the
reduction in RMSE seen at Kewanee. Although the RMSE from
the full time-series remains relatively large, the reduction from
crops is still substantial and will improve both forward and in-
verse models. In particular, not capturing the correct magnitudes
of concentrations in May and July by inaccurately modelling the
spring drawdown will lead to biases in forward modelling ap-
plications and thus cause biases in carbon fluxes from inverse
modelling studies.

In addition to Kewanee, all the towers in the MCI region show
that modelling crops improves the spring draw-down, the diurnal
cycle, and synoptic variability. Fig. 6(a) shows daytime monthly
mean concentrations at each of the towers. The observations have
high concentrations in May and low concentrations in July, with
a spring drawdown of more than 20 ppm at some towers. The
gradient between the towers increases throughout the growing
season: in May, the towers are all within 5 ppm of each other,
while in August the spread has increased to nearly 15 ppm.
In July, three of the towers have daytime mean concentrations
lower than 360 ppm.

The BASE simulation does a poor job capturing the drawdown
during spring months, with mean concentrations remaining sta-
ble between May and July. The BASE case simulates an increase
in the gradient between the towers located in cultivated areas;
however, the model underestimates the May and June concen-
trations at the Missouri Ozark site. Including crops dramatically
improves the simulated carbon uptake during the spring and
summer. The CROP simulation increases the seasonality, and the
CROPN case simulates even greater drawdown between spring
and summer. The CROPN simulation still underestimates the
May and June concentrations, particularly at Missouri Ozark.
The CROPN case captures the increasing gradient between the
towers and simulates the June and July spread reasonably well;
however, it underestimates the monthly-mean May concentra-
tion at Missouri Ozark and overestimates the spread in August. In
May, the highest concentrations amongst the agricultural towers
occur at Round Lake, a densely cultivated region with minimal
spring photosynthetic uptake, while the lowest concentrations
occur at Centerville, located in a less-densely cropped region.
In August, the lowest CO2 concentrations occur at Round Lake
and the highest concentrations occur at the Missouri Ozark site
in both the observations and in the crop cases.

Monthly mean near-surface diurnal amplitudes at each tower
are displayed in Fig. 6(b). The amplitude of the diurnal cycle
increases throughout the growing season amongst the cropland
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Fig. 6. (a) Mid-afternoon (12 p.m.–6 p.m.) monthly mean concentrations at 120 m (except MOZ, at 30 m) for each of the towers, which are
indicated by individual letters. Observations are shown in black (left column), BASE in blue (mid-left column), CROP results in green (mid-right
column) and CROPN results in red (right column). (b) Monthly mean diurnal amplitudes at 30 m for each of the towers. (c) Taylor diagram of the
mean mid-afternoon (12 p.m.–6 p.m.) atmospheric CO2 concentrations at 120 m (except MOZ, at 30 m) for the BASE (blue), CROP (green) and
CROPN (red) cases. A spline fit to the concentrations has been subtracted at every tower to remove seasonality to isolate synoptic variability.
(d) Atmospheric CO2 concentration gradient between the towers (obs, black; BASE, blue; CROP, green; CROPN, red). The gradient is the
difference between the lowest and highest mid-afternoon 120 m (except MOZ, at 30 m) CO2 concentration between the towers.

towers. In May, the diurnal amplitudes at the six heavily cul-
tivated towers are less than 20 ppm, with a spread of 10 ppm.
The minimal amplitudes are due to limited spring crop uptake,
while the diurnal amplitude at the transitional site, Missouri
Ozark, is considerably higher. In May, the BASE simulation
overestimates the amplitude of the atmospheric CO2 diurnal cy-
cle at all the towers except Round Lake. The model simulates an
increase in the amplitude of the diurnal cycle of CO2 concentra-
tions throughout the summer; however, it continues to underesti-
mate the amplitude at Round Lake the entire summer. Including
crops again generally matches the observations more closely, as
both crop cases simulate smaller amplitudes over croplands in
May that increase throughout the summer; however, the CROP
case over-estimates the diurnal amplitudes in July and August.
The CROPN case captures the magnitudes of the diurnal am-
plitude reasonably well, which is likely due not only to the
inclusion of crops but also to the increased horizontal resolution
in the simulation improving the boundary layer dynamics in the
model.

To investigate synoptic variability, a Taylor diagram of day-
time mean atmospheric CO2 concentrations, with the springtime

drawdown removed, is displayed in Fig. 6(c). Including the crop
module increases the correlation at all the towers, indicating
that the timing of the synoptic variability is better simulated
when crops are modelled explicitly. Nesting over the MCI re-
gion further increases the correlations. Except at Missouri Ozark,
the normalized standard deviations are all closer to unity in the
CROPN simulation, indicating the magnitude of synoptic events
has increased in the model and is closer to observed. At Missouri
Ozark, the transitional site, the standard deviation is overesti-
mated in the CROPN simulation. This is caused by a significant
increase in concentrations during mid-August.

In addition to evaluating the atmospheric CO2 concentrations
at the individual towers, the magnitude of the gradient between
towers can also be evaluated. Fig. 6(d) displays the time-series
of the CO2 gradient, which is the difference between the towers
with the highest and lowest daytime mean concentrations. As
indicated previously, the gradient increases from a mean mag-
nitude of ∼10 ppm in May to mid-August, when the gradient
is more than 20 ppm across the MCI region. Fig. 6(d) shows
the gradient also has considerable day-to-day variability. The
BASE simulation does not capture the increase in the gradient
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and poorly simulates the timing and magnitude of the variability
in the gradient. By including crops, the CROP simulation cap-
tures the increase in the gradient during August. The CROPN
simulation does a reasonable job at capturing both the magnitude
as well as the timing of the day-to-day variations, particularly in
July; however, this case overestimates the gradient the first half
of August.

The cause of the day-to-day variability in the CO2 differ-
ences amongst the towers can be investigated by analysing a
time period in the CROPN case when both the model and the
observations show a large change in the gradient. On 24 July
the gradient across the towers is one of the largest seen during
the summer, with a change of ∼35 ppm across the MCI region.
The CO2 concentration map shows that the large-scale gradient
is shifted northward by strong near-surface winds (Fig. 7, left
panel). Zooming in to the MCI region shows that the gradient
occurs through the centre of the towers. The Mead tower has
higher concentrations (greater than 360 ppm), while the Kewa-
nee tower has very low concentrations (less than 335 ppm) both
from local crops as well as from the enhanced uptake over Illi-
nois being advected northward. Two days later, on 26 July, the
atmospheric CO2 concentration difference between the towers
is less than 10 ppm. Relatively low concentrations extend across
the entire MCI region, as the low northerly concentrations are

advected south due to a low pressure system cantered over the
Great Lakes (Fig. 7, right panel). The large-scale gradient is
shifted southward and lies completely below the MCI region,
and all of the towers see lower concentrations that are within
10 ppm.

Although the atmospheric CO2 concentrations are only dis-
played for two days, we investigated other cases when the CO2

gradient jumped between high and low values and found similar
results. High gradients occur when the mean wind is southerly,
causing high concentrations from the south to be advected north-
ward. This synoptic weather pattern causes the large-scale gra-
dient to shift over the MCI region, thus causing large differences
in the concentrations between the towers. On days when the
gradient between the towers is low, the wind is from the north,
advecting lower CO2 further south and causing all the towers
in the MCI region to have lower, relatively similar concentra-
tions. The simulated gradient overestimation in August is due to
very high concentrations seen at the Missouri Ozark and Mead
towers, suggesting the model may be overestimating the stress
in the southeast during the heat wave. The CROPN simulation
shows that changes in the magnitude of the gradient are due to
synoptic weather patterns shifting the location of the large-scale
gradient between the high southeastern CO2 concentrations and
the low central and northern concentrations.

Fig. 7. (Left panel) Mean CROPN daytime atmospheric CO2 concentrations at 120 m on 24 July 2007, with the corresponding mean wind vectors
overlaid. The top panel shows the concentrations from the coarse domain, and the bottom panel shows the concentrations from the nested grid. The
towers are indicated by the black Xs. (Right panel) Mean CROPN daytime atmospheric CO2 concentrations at 120 m on 26 July 2007.
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4. Conclusions

Simulating corn and soybean explicitly has a significant im-
pact on both the timing and the magnitude of carbon fluxes.
Compared to the generic agriculture land cover classification,
the growing season for both corn and soybean is shortened and
intensified, and crop-specific fluxes more closely match avail-
able observations. Since the mid-continent region of the U.S. is
heavily cultivated, crops alter carbon fluxes on regional scales.
In May, the monthly-mean carbon uptake over the central U.S.
was reduced compared to natural vegetation, while the summer
(JJA) carbon sink increased by more than 1.7 kg C m−2.

Altering the carbon fluxes impacted the atmospheric CO2 con-
centrations. Modelling corn and soybean enhanced the spring-
time drawdown, causing increased atmospheric CO2 concen-
trations in May and significantly decreased concentrations dur-
ing the summer, when daytime monthly-mean values less than
360 ppm occurred in both the model and in observations.
These CO2 concentration differences between modelling generic
biomes and specific crop types were coherent over the mid-
continent region in May and even extended to the eastern U.S.
and Canada during the summer, causing changes greater than 15
ppm near the surface. Simulating crops explicitly increased the
amplitude of the diurnal cycle in July and August and improved
the timing and magnitude of CO2 variability due to synoptic
events. Compared with continuous CO2 concentrations collected
across the mid-continent region, the crop module significantly
improved the concentrations, reducing the average RMSE at
120 m by 20%.

Including crops in the model captured the day-to-day vari-
ability in the mid-continent region and increased the atmo-
spheric CO2 concentration gradient across the mid-continent
region, more closely matching the observed gradient in the cen-
tral United States. Analysing the simulation with crops revealed
that the considerable day-to-day variability in the gradient was
due to synoptic variability. The summer of 2007 was exception-
ally hot and dry over the southeastern United States, creating
a summertime source of carbon in that region. This source in-
creased the atmospheric CO2 concentrations, and combined with
fossil fuel emissions across the east coast, established a large-
scale CO2 gradient across the mid-continent. This large-scale
near-surface gradient of over 30 ppm shifted with the weather
patterns: southerly mean flow shifted the gradient northwards
into the mid-continent causing high concentration differences
between the towers, whereas northerly mean flow associated
with low-pressure systems across northern United States and
Canada shifted the large-scale gradient south and minimized the
concentration differences seen across the mid-continent.

Crops significantly altered both carbon fluxes and atmo-
spheric CO2 concentrations on regional spatial scales and
monthly time scales. Using natural vegetation to represent crops
creates biases in forward models, and thus will create errors
in source and sink estimates from atmospheric inverse models.

Because crops are physiologically and phenologically differ-
ent compared to forests and grasslands, it is essential to rep-
resent them in land surface models used for carbon studies,
as these differences dramatically changed the regional carbon
source and sink estimates, as well as regional atmospheric CO2

concentrations.
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[1] This study presents observations of atmospheric boundary layer CO2 mole fraction
from a nine-tower regional network deployed during the North American Carbon
Program’s Mid-Continent Intensive (MCI) during 2007–2009. The MCI region is largely
agricultural, with well-documented carbon exchange available via agricultural inventories.
By combining vegetation maps and tower footprints, we show the fractional influence of
corn, soy, grass, and forest biomes varies widely across the MCI. Differences in the
magnitude of CO2 flux from each of these biomes lead to large spatial gradients in the
monthly averaged CO2 mole fraction observed in the MCI. In other words, the monthly
averaged gradients are tied to regional patterns in net ecosystem exchange (NEE). The daily
scale gradients are more weakly connected to regional NEE, instead being governed by
local weather and large-scale weather patterns. With this network of tower-based mole
fraction measurements, we detect climate-driven interannual changes in crop growth that are
confirmed by satellite and inventory methods. These observations show that regional-scale
CO2 mole fraction networks yield large, coherent signals governed largely by regional
sources and sinks of CO2.

Citation: Miles, N. L., S. J. Richardson, K. J. Davis, T. Lauvaux, A. E. Andrews, T. O. West, V. Bandaru, and E. R. Crosson
(2012), Large amplitude spatial and temporal gradients in atmospheric boundary layer CO2 mole fractions detected with
a tower-based network in the U.S. upper Midwest, J. Geophys. Res., 117, G01019, doi:10.1029/2011JG001781.

1. Introduction

[2] Interest in quantifying carbon dioxide (CO2) sources
and sinks, both biogenic and anthropogenic, is growing
with the increasing interest in monitoring and verifying
CO2 emissions [Committee on Methods for Estimating
Greenhouse Gas Emissions, 2010]. The continuous tower-
based CO2 mole fraction measurement density is increasing
in the United States and Europe, with the goal of using the
data in inversion models to diagnose CO2 fluxes. In North
America, 6–8 towers within an area of 107 km2 were avail-
able to past continental-scale studies [Peylin et al., 2005;
Peters et al., 2007; Schuh et al., 2010]. Other studies focused
on regional scales, using CO2 mole fractions measured at
one tower in addition to aircraft [Matross et al., 2006] and
meteorological [Tolk et al., 2009] data. Lauvaux et al. [2009],
using data observed during the CarboEurope Regional

Experiment [Dolman et al., 2006], determined regional-scale
fluxes using two towers within a 105 km2 domain, repre-
senting an order of magnitude improvement in tower density.
Still, the scarcity and limited time frame of tower-based
measurements have hindered the determination of regional-
scale fluxes [Matross et al., 2006]. Uncertainties in the flux
estimates remain large, but can be reduced by including
additional towers [Butler et al., 2010].
[3] The Mid-Continent Intensive (MCI) is the first targeted

experimental campaign of the North American Carbon Pro-
gram (NACP) [Wofsy and Harriss, 2002; Denning, 2005].
The primary objective of the MCI [Ogle et al., 2006] is to
compare regional-scale CO2 fluxes derived from inventory
data and biogeochemical models [King et al., 2007; Xiao
et al., 2008; West et al., 2008; Gurney et al., 2009; Ogle
et al., 2010] to fluxes inferred from tower-based CO2 mea-
surements via inversion models [Tans et al., 1990; Peters
et al., 2007; Lauvaux et al., 2009; Schuh et al., 2010].
The MCI campaign incorporates tower CO2 mole fraction
measurements at nine sites, USDA National Agricultural
Statistics inventory data, ongoing eddy-covariance flux
measurements from AmeriFlux towers in the region, other
inventory data such as the Vulcan fossil fuel emissions
product [Gurney et al., 2009], USDA National Resources
Inventory, USDA Forest Inventory and Analysis data,
and airborne trace gas measurements [Martins et al., 2009;
Crevoisier et al., 2010].
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[4] Modeling results for the MCI region show the impor-
tance of vegetation type. Simulation of corn and soybean
explicitly using crop-specific physiology and phenology
results in improved modeled NEE [Lokupitiya et al., 2009]
and forward modeled CO2 mole fractions [Corbin et al.,
2010]. While Lauvaux et al. [2011] present the regional
CO2 fluxes for June–December 2007 and explore model
uncertainties resulting from inverse system assumptions, in
this paper we focus on the CO2 mole fraction measurements.
[5] Understanding of the characteristics (amplitudes, tem-

poral persistence, and attribution to vegetation, weather,
and climate) of atmospheric CO2 is critical to the design
of observational networks [Committee on Methods for
Estimating Greenhouse Gas Emissions, 2010; Nisbet and
Weiss, 2010]. Documenting the characteristics and causes
of transient, weather-related regional mole fraction gradients
has not, however, been possible to date because of very
limited spatial sampling. Seasonal-scale characteristics have
been previously reported at single sites [Davis et al., 2003;
Haszpra et al., 2008] but not for a regional network. Previous
studies of daily scale gradients have largely been limited to
temporal analyses at single sites [Hurwitz et al., 2004],
modeling [Wang et al., 2007] and aircraft studies [Chan
et al., 2004; Gerbig et al., 2003]. While there are numerous
satellite remote sensing design studies [Houweling et al.,
2010], real data to inform these studies are scarce [Lin
et al., 2004].
[6] The purposes of this paper are (1) to document the

seasonal cycle of CO2 mole fraction at several sites in a
largely agricultural region; (2) to document the spatial CO2

mole fraction gradients in the region on seasonal, daily,
and interannual time scales; (3) to ascertain the degree to
which regional-scale CO2 mole fraction networks can yield
coherent signals governed largely by regional sources and
sinks of CO2; and (4) to determine if signals in the tower-
based CO2 mole fraction data are correlated with both
ground-based inventory data and estimates from satellite
remote sensing.

2. Methods

2.1. Mid-Continent Intensive Region
[7] The U.S. upper Midwest (Figure 1) was the region

selected for theMid-Continent Intensive (MCI) because of its
uncomplicated terrain and because the dominant crop eco-
systems are extensively documented. The region is primarily
agricultural, with cropland and grassland being the dominant
vegetation types, but has forest cover in the southern and
especially northern portions of the region (U.S. Geological
Survey Land Cover Institute, 2010; see http://landcover.usgs.
gov). Corn and soybeans are the dominant crops; in Iowa,
the area planted with these crops is 52% and 41% of the
total agricultural area, respectively [U.S. Department of
Agriculture National Agricultural Statistics Service (USDA-
NASS), 2010].

2.2. Tower CO2 Measurements
[8] A total of nine communication tower-based CO2 sen-

sors were located within a 500 ! 800 km2 area within the
MCI study region from May 2007 through November 2009

Figure 1. Footprint of the CO2 mixing ratio tower network plotted on a natural logarithmic scale. The
footprints (ppm/g CO2 m

"2 h"1) are normalized such that the total is 100% times the number of towers;
the color bar indicates the approximate percentage of the contribution (within the MCI domain) arising
from each particular 20 km ! 20 km pixel. The time frame is July–August 2007.
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(see Table 1 and Figure 1). The mean distance of each
tower to the closest neighboring tower is 188 km (Table 2).
The National Oceanic and Atmospheric Administration
(NOAA)’s Earth System Research Laboratory (ESRL)
maintains measurements of CO2 mole fractions at two
long-term tall towers in the study region (LEF, Park Falls,
Wisconsin, and WBI, West Branch, Iowa). These sites are
part of the NACP’s continental backbone observing network
and serve as foci for the MCI experiment. LEF (Park Falls,
Wisconsin) and WBI (West Branch, Iowa) are instrumented

with NOAA-ESRL tall tower nondispersive infrared (NDIR)
systems [Bakwin et al., 1995; Zhao et al., 1997]. With the
goal of oversampling the MCI region, The Pennsylvania
State University deployed instruments at five towers: Cen-
terville (Iowa), Galesville (Wisconsin), Kewanee (Illinois),
Mead (Nebraska), and Round Lake (Minnesota). These
sites were instrumented with wavelength-scanned cavity
ring-down spectroscopy (WS-CRDS) systems (Picarro, Inc.,
Santa Clara, California, model CADS) [Crosson, 2008].
Chen et al. [2010] document the accuracy and precision of a

Table 1. Site Latitudes, Longitudes, Measurement Dates, and Sampling Level Used

Centerville Galesville Kewanee Mead
Missouri
Ozarks

Round
Lake Rosemount

West
Branch

Park
Falls

Latitude (deg N) 40.7919 44.0910 41.2762 41.1386 38.7441 43.5263 44.6886 41.725 45.9459
Longitude (deg W) 92.8775 91.3382 89.9724 96.4559 92.2000 95.4137 93.0728 91.353 90.2723
Measurement dates Apr 2007 to

Nov 2009
Jun 2007 to
Nov 2009

Apr 2007 to
Nov 2009

Apr 2007 to
Nov 2009

Sep 2006 to
current

May 2007 to
Nov 2009

Nov 2007 to
current

Jul 2007 to
current

1995 to
current

Sampling level used
(m AGL)

110 122 140 122 30 110 100 99 122

Table 2. Distances Between Site Pairs, Magnitudes of the Median Intersite Differences and Gradients in Daily Daytime CO2

Mole Fractiona

Centerville Galesville Kewanee Mead
Missouri
Ozarks

Round
Lake Rosemount

West
Branch

Park
Falls

Centerville
Distance (km) 388 250 303 235 369 437 164 611
Median difference (ppm) 0.58 5.13 0.88 1.50 6.04 4.08 5.12 0.15
Median gradient (ppm/100 km) 0.2 2.1 0.3 0.6 1.6 0.9 3.1 0.0

Galesville
Distance (km) 332 532 600 333 156 263 223
Median difference (ppm) 4.45 0.51 2.84 5.43 0.60 3.96 1.43
Median gradient (ppm/100 km) 1.4 0.1 0.5 1.6 0.4 1.5 0.6

Kewanee
Distance (km) 543 340 512 459 125 520
Median difference (ppm) 5.37 7.42 0.48 3.04 0.97 6.43
Median gradient (ppm/100 km) 1.0 2.2 0.1 0.7 0.8 1.2

Mead
Distance (km) 450 279 483 430 730
Median difference (ppm) 0.17 5.14 1.36 4.73 0.11
Median gradient (ppm/100 km) 0.0 1.8 0.3 1.1 0.0

Missouri Ozarks
Distance (km) 597 669 340 817
Median difference (ppm) 9.02 5.89 8.44 4.13
Median gradient (ppm/100 km) 1.5 0.9 2.5 0.5

Round Lake
Distance (km) 228 388 487
Median difference (ppm) 4.72 1.22 6.47
Median gradient (ppm/100 km) 2.1 0.3 1.3

Rosemount
Distance (km) 361 260
Median difference (ppm) 1.84 0.67
Median gradient (ppm/100 km) 0.5 0.3

West Branch
Distance (km) 477
Median difference (ppm) 6.02
Median gradient (ppm/100 km) 1.3

aTime period is 2007–2009 growing season (July and August). Sites are classified as either corn dominated (Kewanee, Round Lake, and West Branch),
or non–corn dominated.
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WS-CRDS (Picarro, Inc.) in laboratory testing and an aircraft
deployment. Richardson et al. [2012] document the quality
assessment of the instruments during the MCI; 8 months of
testing against a NOAA-ESRL NDIR system in West
Branch, Iowa, yielded median daytime-only differences of
"0.13 # 0.63 ppm. Two additional long-term sites mea-
suring well-calibrated CO2 mole fraction (University of
Minnesota KCMP, Rosemount, Minnesota, and Pennsylvania
State University (PSU)/Oak Ridge National Laboratory
(ORNL, Missouri Ozarks, Missouri) are located within the
region and used in this study. At the University of Minnesota
Rosemount tower, CO2 mole fraction is measured using a
tunable diode laser [Griffis et al., 2010]. The Missouri
Ozarks CO2 measurement site is colocated with an ongoing
AmeriFlux site [Gu et al., 2008] and employs a well-
calibrated system based on a NDIR instrument (Licor, Inc.,
Lincoln, Nebraska, model LI-820). The system is dried using
Nafion (Perma Pure, LLC, Toms River, New Jersey, model
MD-070-96P-4) driers, calibrated every 4 h using four real-
air standards (with hourly target and daily archive tests as
well), temperature and pressure controlled, and automatically
leak tested. Residuals from known tank values tested daily at
the site are "0.11 # 0.21 ppm [Stephens et al., 2011].
[9] Although nighttime mole fractions provide useful

information about respiration, in this study we focus on only
the daytime (12:00–17:00 LST) average CO2 mole fractions.
Although these hours extend into the evening transition as
defined by Davis et al. [2003], composited diurnal cycles of
CO2 in July are well mixed during these hours [Bakwin et al.,
1998, Figure 1]. During the daytime, the CO2 mole fraction
from the levels used in this study (100–140 m AGL for all
sites except for Missouri Ozarks, which is 30 m AGL) is a
reasonable approximation of the mixed layer value [Bakwin
et al., 1998; Chan et al., 2004]. At West Branch during
daytime in the peak growing seasons 2007–2009, the median
difference between the 99 and 379 m AGL values is 1.0 #
2.2 ppm and between the 31 and 99 m AGL values is
1.1 # 1.5 ppm.
[10] To investigate seasonal-scale variability, we used a

31 day running mean to smooth the CO2 mole fraction daily
daytime average data. We required 60% of the days within
each window to be good data. To avoid extending the
smoothed product over areas with prolonged missing data,
we also required that there be good data within 2 days of each
smoothed point.

2.3. Tower Mole Fraction Footprints
[11] We simulated the tower mole fraction footprints

using the nonhydrostatic mesoscale model WRF-Chem v3.1
[Skamarock et al., 2008] at 10 km resolution. The WRF
simulations used are described in more detail in the work
of Lauvaux et al. [2011], but here we summarize the
description of the main schemes, driver data, and resolution.
The atmospheric boundary layer scheme used is the Mellor-
Yamada-Nakanishi-Niino (MYNN) 2.5 scheme coupled to
the Monin-Obukhov (Jancic Eta) scheme for the surface
physics. The atmospheric vertical column is described by
60 levels, with 40 levels in the lower 2 km. We used the
NOAH land surface model to describe the surface energy
balance, and the NCEP Eta/NAM model output at 40 km
resolution for the initial conditions and nudged over four

pixels (40 km) to provide boundary conditions around our
simulation domain. We simulated the influence functions
with the Lagrangian Particle Dispersion Model [Uliasz,
1994]. We used the mean three-dimensional winds, potential
temperature, and turbulent kinetic energy as input variables
each 30 min to drive the particle motions from the receptor
locations to the sources, as described in the work of Lauvaux
et al. [2008]. We computed the footprints for each obser-
vation hour, at each tower location, by counting particles
over a 20 km resolution grid. We then averaged the footprints
corresponding to daytime hours only (06:00–18:00 LST) at
a weekly time step, and summed over July–August 2007 to
represent the area of influence at the surface during the
growing season. The resulting summer time aggregated foot-
print represents the contribution of each surface pixel within
the MCI domain to the summer drawdown observed in the
daily daytime mole fractions. In addition, we quantified the
influence of the boundaries (CO2 mole fraction inflow) by
counting particles at the boundaries. The boundary influence
is a separate contribution, given by a global-scale model, in
this case, CarbonTracker 2009 [Peters et al., 2007]. We
thus computed the fractional influence from outside the MCI
domain, as well as the distribution of the influence within
in it.

2.4. Vegetation Map
[12] The vegetation map we used in calculating the biome

fractional influence is similar to that described in the work of
Schuh et al. [2010]. We obtained biomes from the Terra
MODIS 12 Landcover 1 km product and mapped them to SiB
biome classes, with corrections for C4 grasses. We dis-
aggregated corn, soy, and wheat biomes from the original
grassland/agriculture biome using county-level estimates of
land use from the USDA National Agriculture Statistics
Service. The new grassland/agriculture (C3) category thus
includes crops such as alfalfa hay and oats as well as the more
predominant pastureland. Tallgrass (C4) prairie and wheat
are not predominant in the MCI region, and are included in
the “other” category. Forested biomes were combined. The
final vegetation map includes the fractional coverage of the
four most represented biomes in the MCI region with an
additional category for all other biomes (forest, soy, grass-
land, corn, and other) at 1 km resolution. In section 3.1 this
map is combined with 20 km resolution footprints to repre-
sent the fractional influence at the towers for each of the
five categories.

2.5. NDVI Time Series Crop Phenology Curves
[13] The Normalized Difference Vegetative Index (NDVI)

was estimated using 250 m spatial resolution, 8 day
composite, collection-5 reflectance data (MOD09Q1) from
NASA’s Terra Moderate Resolution Imaging Spectro-
radiometer (MODIS) sensor. MODIS reflectance data is
corrected for atmospheric gases and aerosols [Vermote et al.,
2002], and has high subpixel geolocation accuracy [Wolfe
et al., 2002]. MOD09Q1 reflectance data consists of obser-
vations that are selected on the basis of quality, view angle,
and absence of clouds [Vermote et al., 2011]. MOD09Q1
also includes binary quality control flags that provide
information on pixel quality. We used the quality control
information to select high-quality, cloud-free data from days
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81–321 for years 2007–2009. The tiled reflectance data was
mosaicked and then reprojected from Sinusoidal to Albers
Equal-Area Conic Projection using the MODIS Reprojection
Tool (MRT) [Dwyer and Schmidt, 2006]. The Cropland Data
Layer (CDL), an annual crop-specific land cover data set
based on satellite data [Johnson and Mueller, 2010], was
used to retrieve reflectance data from MOD09Q1 for corn
and soybean crops. NDVI was calculated for each compos-
ited day and for each crop, and then combined to generate
time series crop phenology curves for years 2007–2009.
Positive and negative changes in the slope of the phenology
curves represent plant emergence and senescence, while
plant maturity occurs at peak NDVI.

3. Results

3.1. Atmospheric- and Inventory-Based Detection
of CO2 Flux Spatial Variability
[14] Before examining the CO2 mole fraction measured in

the MCI, we first consider the spatial areas that contribute to
the signal measured at each tower. Mole fraction footprints,
when combined with the spatially varying flux, indicate the
relative influence of a location at the surface to the mole
fraction measured at a tower. July–August 2007 averaged,
daytime-only footprints are shown in Figure 1 for the MCI
towers. About 39% of the total signal (∆CO2/flux) originates
with a 150 km radius of each tower. Conversely, 28% ori-
ginates outside of the MCI domain. The signal per unit area
decreases quickly with distance from the towers: pixels sur-
rounding each of the towers each contribute 1–3% of the total
signal, while pixels on the edge of the domain each contribute
two orders of magnitude less per pixel to the total signal
(Figure 1).
[15] We now couple the footprints with the vegetation map

described in section 2.4 to determine the biome fractional
influence (Figure 2), a measure of the fractional time that an
air parcel arriving at each tower has spent influenced by each
biome. The contribution of each biome varies considerably
among the sites. Grassland, which includes alfalfa and oats as

well as the more predominant pastureland, is the biome most
influencing Centerville, Galesville, and Mead. Park Falls
(LEF) andMissouri Ozarks are influenced primarily by forest
and grassland biomes. Although corn influences each site,
the contribution is largest at Kewanee, Round Lake, and
West Branch. Soybeans, while common in the region, do
not dominate the influence of any of the sites. Wheat and
tallgrass prairie are not common in the MCI region.
[16] The variability in the predominant vegetation types

of the region affects the regional patterns in CO2 flux because
of the variability of carbon uptake per unit area of each
vegetation type. Shown in Figure 3 is the weekly averaged
daytime (12:00–17:00 LST) net ecosystem exchange (NEE)
measured at four corn (Rosemount-G19 in Minnesota; see
Griffis et al. [2010] and Mead-rain, Mead-irrigated, and
Mead-irrigated/rotated in Nebraska; see Verma et al. [2005]),
two grassland (Brookings and Fermi prairie in Illinois; see
Matamala et al. 2008]), two forest (LEF in Wisconsin; see
Davis et al. [2003] and Missouri Ozarks in Missouri; see Gu
et al. [2008]), and one soy (Fermi agriculture in Illinois; see
Matamala et al. [2008]) eddy-covariance flux sites in the
MCI region. The peak daytime NEE of corn during the
growing season is significantly larger than that of each of
the other vegetation types. The peak daytime NEE over the
year for the corn sites occurs in mid-July, averaging "51
mmol m"2 s"1 for the four corn sites. The average of the
Mead corn sites in 2001/2003 is "63 mmol m"2 s"1 [Verma
et al., 2005]. In 2002, two of the Mead sites were planted
with soybean and their peak CO2 uptake averages "37 mmol
m"2 s"1 [Verma et al., 2005]. In summary, using the peak
daytime weekly averaged NEE for site-years shown in
Figure 3 in addition to the results in the work of Verma et al.
[2005], the corn/soy peak NEE ratio varies between 1.4
and 3.2, the corn/grassland peak NEE ratio varies between

Figure 2. Biome fractional influence, averaged over
July–August 2007, for the daytime only (not available for
Rosemount). The biomes include, from left to right: forest,
soy, grassland, corn, and other.

Figure 3. Weekly averaged daytime (12:00–17:00 LST)
net ecosystem exchange measured at corn-dominated eddy
flux sites Rosemount-G19 (blue solid line), Mead-rain (red
solid line), Mead-irrigated (green solid line), and Mead-
irrigated/rotated (black solid line); grassland-dominated sites
Brookings (blue dotted line) and Fermi-prairie (red dotted
line); forested sites LEF (green dotted line) and Missouri
Ozarks (black dotted line); and soy site Fermi-agriculture
(orange dotted line).
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2.3 and 7.0, and the corn/forest peak NEE ratio varies
between 3.0 and 9.0. The large difference in NEE between
corn and noncorn sites when the plants are growing con-
tributes to the important role that corn plays in the carbon
budget of this largely agricultural region.
[17] We now consider the net primary production (NPP)

for corn in the MCI region, derived from USDA National
Agricultural Statistics Service inventory data based on
methods described by West et al. [2010]. Areas of highest
corn flux per unit area are in Nebraska, southern Minnesota,
Iowa, and northern and central Illinois (Figure 4). The corn
NPP within the MCI region varies from about 5 to 10 Mg C
ha"1 yr"1, nearly doubling carbon uptake when moving from
southeast Iowa to northwest Iowa. We describe the three sites
with corn fractional influence greater than 0.30 (Kewanee,
Round Lake, and West Branch) as “corn dominated” and the
remaining six as “non–corn dominated” to reflect the differ-
ences in corn fractional influence and corn NPP per unit area.
The threshold of 0.30 was chosen to minimize the sum of the
standard deviations of the corn fractional influence within
the two groups, requiring each group to have at least three
members.
[18] From the above results, we have inferred regional

patterns in ecosystem NEE.We now determine whether these
patterns are apparent in the CO2 mole fractions measured at
the towers, or if, instead, atmospheric mixing equilibrates the
gradients. In the smoothed time series of CO2 mole fraction

(Figure 5), the corn-dominated sites in fact exhibit extremely
low growing season minima, in the range of 358–364 ppm.
These low values are near those last observed in the globally
averaged marine surface annual CO2 mole fractions 10–
13 years prior to the beginning of this study (see http://
www.esrl.noaa.gov/gmd/cgg/trends). The growing season
minima are correlated with the relative influence of corn,
with the corn-dominated minima average 6–8 ppm lower
than the non-corn-dominated average (Table 3). Similarly,
the seasonal drawdown (the difference between dormant
season maxima and growing season minima for each year)
also varies within the MCI region. The seasonal drawdown
averages 35 ppm for corn-dominated sites (Table 3), which
is significantly larger than that measured at non–corn belt
sites (27 ppm), and is 5 times larger than the tropospheric
“background” as represented by Mauna Loa (7 ppm).
Aircraft-measured free tropospheric CO2 mole fractions at
WBI also exhibit a 7 ppm drawdown (see http://www.esrl.
noaa.gov/gmd/cgg/trends). The corn-dominated seasonal
drawdown is larger than that previously observed at
continental boundary layer sites, for example, 26 ppm at
Hegyhátsál [Haszpra et al., 2008] and 23 ppm at LEF [Davis
et al., 2003]. Although Centerville, Galesville, Mead, and
Rosemount have a large influence from crops, the CO2 sea-
sonal pattern of those sites is more similar to the forested
sites LEF and Missouri Ozarks (Figure 5).

Figure 4. Inventory-based corn flux (corn NPP) in theMCI region for 2007, including corn grain and corn
silage. Tower-based CO2 mixing ratio measurement site locations in the MCI region are shown (open
squares). Map resolution is the county geopolitical unit.
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[19] We now consider the magnitude of the seasonal
drawdown expected because of the differing NEE from each
biome. As a first-order estimate, the magnitude expected is
proportional to the sum of the fractional influence of each
biome multiplied by the average biome flux. The average
corn, soy, grass, and forest fractional influence for corn-
dominated sites is 0.36, 0.21, 0.39, and 0.02, respectively,
whereas for non-corn-dominated sites the fractional influ-
ence is 0.18, 0.12, 0.53, and 0.16 (Figure 2). Using a range
of values for each corn/noncorn biome NEE ratio (Figure 3),
the expected ratio between the average seasonal drawdown
of the corn-dominated versus the non-corn-dominated sites is
1.29–1.56. The actual ratio is 1.26 (Table 3). Since our esti-
mate excludes the effects of atmospheric mixing, it is not

surprising that the actual ratio is near the lower extreme of the
estimate. A more precise analysis is prohibited by lack of
knowledge of the exact corn/noncorn flux ratios.
[20] As is apparent in Figure 5, on a seasonal timescale,

gradients observed across the region are strongly dependent
on local vegetation type. We consider spatial differences
and gradients of two different groups of site pairs: similar
vegetation site pairs (either both corn dominated or both non–
corn dominated), and cross-vegetation site pairs (one corn-
dominated site paired with one non-corn-dominated site).
Distributions of the differences and gradients for two similar
vegetation site pairs and two cross-vegetation site pairs are
shown in Figure 6. The magnitude of the median intersite
difference for pairs including only similar vegetation types

Figure 5. Smoothed CO2 mole fraction for each site in the MCI region. Data for Mauna Loa (MLO),
representing the tropospheric “background,” are shown for reference (data courtesy of NOAA-ESRL;
see http://www.esrl.noaa.gov/gmd/cgg/trends). Rosemount data are courtesy of T. Griffis (University of
Minnesota).

Table 3. Dormant Season Maxima, Growing Season Minima, and Seasonal Drawdown of the Smoothed CO2 Mole Fraction for Each Site
Compared to Reference Values of 395 and 360 ppma

Site

Rank in Terms
of Corn Biome

Influence

2007 2008 2009

Dormant
Season
Maxima

Growing
Season
Minima
(ppm)

Seasonal
Drawdownb

Dormant
Season
Maxima

Growing
Season
Minima
(ppm)

Seasonal
Drawdownb

Dormant
Season
Maxima

Growing
Season
Minima
(ppm)

Seasonal
Drawdownb

Park Falls 9 – 8 25c "1 10 24 1 9 27
Missouri Ozarks 8 – 8 26c 0 – – 1 – –
Centerville 7 – 7 27c 0 13 22 – 7 29c

Galesville 6 – 6 29c 1 7 29 2 7 30
Rosemount 5 – – – 1 8 28 – – –
Mead 4 – 9 24c "1 7 27 1 4 32
West Branch 3 – "2 38c 2 4 33 3 0 38
Round Lake 2 – 1 32c "1 3 31 1 3 33
Kewanee 1 – 1 34c 1 2 34 – 1 36c

Reference value – 360 – 395 360 – 395 360 –

aFor example, the actual dormant season maxima for Park Falls is 395 + ("1) = 394 ppm. The sites are ordered according to corn biome influence
(Figure 2). Although the values are higher in January for 2007, we consistently use April values for the dormant season maxima for comparability.

bSeasonal drawdown is calculated by subtracting the growing season minima from each year’s dormant season maxima.
cIn site-years with missing dormant season maxima; the value was estimated by adding (subtracting) the difference between the 2008 and 2009 site-

averaged dormant season maximum to (from) the site’s 2008 dormant season maximum.
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is 0.9 ppm (see Figure 7a and Table 2) during the peak
growing season (July–August), whereas the median of the
intersite differences for cross-vegetation pairs is 5.2 ppm,
with clear separation between the two groups. The pattern
is similar for the gradients (see Figure 7b and Table 2) with
the median magnitude of similar vegetation site pairs being
0.3 ppm/100 km, and that of cross-vegetation pairs being
1.5 ppm/100 km. West Branch (corn dominated) and
Centerville (non–corn dominated), sites separated by only
164 km, exhibited the largest median intersite peak growing
season gradient, 3.1 ppm/100 km, with a median intersite
difference magnitude of 5.1 ppm (Table 2).
[21] Although the categorization of corn-dominated and

non-corn-dominated groups simplifies the discussion, the
relationship holds for the individual sites as well. The biome
fractional influence for corn, or the average amount of time
air parcels eventually arriving at each tower spent above land
planted with corn, is shown as a function of the seasonal
drawdown for each site in Figure 8. Sites most influenced by
corn have larger seasonal drawdown, with a coefficient of
determination (r2) of 0.59.
[22] Another explanation for the observed differences in

seasonal drawdown could be meteorological differences if

corn were preferentially planted in areas with larger than
average temperatures (enhancing plant growth and thus
CO2 uptake) or lower winds (thus lower mixing). However,
analysis of July–August 2007 NCEP Reanalysis Products air
temperature and wind speed (see http://www.esrl.noaa.gov/
psd/data/reanalysis/) revealed no correlation of average
temperature at each site with its seasonal drawdown (r2 =
0.01) and only a slight correlation of the average wind speed
(r2 = 0.1).

3.2. Daily Scale Variability of CO2 Fluxes
[23] In the previous discussion, we focused on the

seasonal-scale patterns of CO2 mole fraction in the MCI
region. We now consider the large day-to-day weather-
related variability (shown for WBI in Figure 9a). As an
example of a corn-dominated and a non-corn-dominated site,
we examine the histograms of CO2 mole fraction for WBI
and LEF for July–August 2007 (Figure 9b). While there
is considerable overlap between the histograms, the median
CO2 mole fraction for WBI is 365.1 ppm, compared to
371.1 ppm for LEF. The standard deviation of the distribu-
tion is larger at WBI (11.7 ppm) compared to LEF (6.3 ppm),
and there are several days during the growing seasons of
2007–2009 in which the daytime average CO2 mole fraction
measured at WBI is in the range 340–350 ppm.
[24] Both local weather and the overall weather patterns

affect the daily CO2 mole fraction measured at a tower.
As local weather conditions change from one day to the next,

Figure 6. (a) The 2007–2009 averaged peak growing
season (July–August) distribution of daily daytime average
CO2 mole fraction differences between Galesville and
Centerville (red), Round Lake and Kewanee (blue), West
Branch and Centerville (black), and Kewanee and Centerville
(white). The bin size is 5 ppm. (b) As in Figure 6a but for
gradients rather than differences. The bin size is 2.5 ppm/
100 km. For both Figures 6a and 6b, colored bars represent
distributions of similar vegetation site pairs, and black and
white bars represent distributions of cross-vegetation site pairs.

Figure 7. CO2 mole fraction spatial differences and gradi-
ents. (a) Magnitude of the median intersite difference CO2
mole fraction during the peak growing season (July–August
2007 to 2009) for pairs including only non-corn-dominated
sites (triangles), pairs including only corn-dominated sites
(open circles), and cross-vegetation pairs (solid circles).
(b) Corresponding magnitude of the median intersite gradients.
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the fluxes are scaled accordingly, leading to daily changes in
the CO2 mole fractions. For example, Chan et al. [2004]
showed that cloud cover in frontal regions reduces photo-
synthetic uptake, resulting in CO2 mole fraction gradients
across frontal regions. The CO2 mole fractions of the air
masses entering the region are dependent on their source
region. A large-scale N–S gradient in near-surface CO2 mole
fractions exists between the largely agricultural MCI region
and the relatively unproductive south-central United States
(Texas/Louisiana/Oklahoma/Arkansas); the regional pattern
of CO2 mole fraction is thus dependent on large-scale wind
direction [Corbin et al., 2010].
[25] During the peak growing season (July–August), 5% of

the day-to-day changes at individual sites are greater than
20 ppm and a few are greater than 30 ppm (Figure 10). While
the day-to-day changes are large, they depend only weakly
on local vegetation type: the mean magnitude is 7.3 ppm for
corn-dominated sites, compared to 6.2 ppm for non-corn-
dominated sites. Temporal changes and spatial gradients are
inherently linked; the range of intersite gradients on a daily
timescale is similarly only weakly dependent on local vege-
tation type. For similar vegetation site pairs, 9% of the
gradients are larger than 5.5 ppm/100 km, and for cross-
vegetation sites pairs 10% are. The contribution of the local
flux to the CO2 mole fraction spatial variability is thus
dependent on timescale. While the daily scale CO2 mole
fraction depends most strongly on regional-scale weather
conditions and air mass origin, when these daily values are
averaged to a seasonal scale, we see the strong effects of the
local flux as we showed in section 3.1.

3.3. Interannual Variability in CO2 Fluxes
[26] The majority of sites exhibited relatively little change

in their growing season minima from year to year. Some
sites, however, showed interannual variability related to cli-
mate variability (Table 3). Flooding occurred in the mid-
western United States during the first half of June 2008
(see http://www.ncdc.noaa.gov), although it was not uniform
over the region. While Missouri Ozarks, Centerville, and

West Branch recorded cumulative precipitation exceeding
30% above normal over the months of March–September,
Round Lake, Rosemount, and Park Falls (LEF) experienced
lower than normal precipitation during that time period. Two
of the three sites experiencing the most flooding (Centerville
and West Branch) exhibited decreased seasonal CO2
drawdown (by 4–6 ppm) in 2008 as compared to 2007 and
2009. The vegetation of the flood-affected site that did not,
Missouri Ozarks, includes a higher percentage of forest,
which perhaps mitigated the flooding effects.
[27] Agriculture within the region was considerably

affected by the 2008 flooding. Considering corn and soy-
beans together, the total harvested volume (grain production)
of these crops decreased by 7% for the state of Iowa, com-
pared to 2007 and 2009 [USDA-NASS, 2010]. The total
estimated NPP of corn, using the method documented in
the work of West et al. [2010], was 221.57, 207.33, and

Figure 8. Fractional biome influence attributable to corn
(as in Figure 2) as a function of seasonal drawdown (as in
Table 3) in 2007 (open circles), 2008 (solid circles), and 2009
(triangles).

Figure 9. (a) Daily daytime CO2 mole fraction for WBI.
(b) Histogram of CO2 mole fraction, for July–August 2007
only for WBI (white bars) and LEF (black bars). The bin size
is 5 ppm.
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222.52 Tg C in 2007, 2008, and 2009, respectively. Agri-
cultural areas surrounding the Centerville site were most
affected by the flooding of 2008, with corn harvested volume
down by 18% compared to the 2007–2009 average, and
soybean harvested volume down by 10% [USDA-NASS,
2010]. Other sites were affected by varying degrees. The
total regional flux, of course includes contributions from

natural ecosystems as well; they may be less affected by
flooding.
[28] In addition to detecting effects of the 2008 flooding,

we also see more subtle climate-based interannual variability,
particularly in the timing of the crop growth. The onset of the
growing season, as evidenced by the onset of the seasonal
drawdown in CO2, was 2–3 weeks early in 2007, compared
to 2008 and 2009 (Figure 11a). Similarly, interannual dif-
ferences are observed in the normalized difference vegetation
index (NDVI) time series curves for corn and soybean fields
in the State of Iowa. The emergence, maturity, and senes-
cence of both corn and soy were late by 1–2 weeks in 2008
compared to 2007 (Figures 11b and 11c). Except for mid-
June to mid-July, the 2009 corn NDVI followed that of 2008;
soy NDVI for 2009 was similar to that of 2007 through
August and then more similar to 2008. The coefficient of
determination (r2) between corn NDVI and smoothed atmo-
spheric CO2 mole fraction at Kewanee in 2007, 2008, and
2009 was 0.66, 0.85, and 0.75, respectively.
[29] Agricultural inventory statistics, based on farmer

surveys [USDA-NASS, 2010], also indicate considerable
interannual variability: corn in Iowa reached maturity about
the same time in 2008 and 2009, but 3–4 weeks earlier in
2007. The spring of 2007 was particularly warm for the state

Figure 10. (a) The 2007–2009 peak growing season day-
to-day change in daily daytime average CO2 mole fraction
observed at corn-dominated sites (WBI, KW, and RL) versus
three of the non-corn-dominated sites (LEF, MO, and CE).
Each point represents one day-to-day change for a cross-
vegetation pair. The axes of the ellipse indicate the mean
magnitude of the day-to-day change for the corn-dominated
sites (7.3 ppm) and non-corn-dominated sites (6.2 ppm).
(b) Histogram of the magnitude of the day-to-day changes
in Figure 10a for corn-dominated sites (white bars) and non-
corn-dominated sites (black bars).

Figure 11. (a) Smoothed daily daytime average CO2 mole
fraction at Kewanee for 2007 (blue), 2008 (red), and 2009
(black). (b) Normalized difference vegetation index (NDVI)
for corn averaged for the state of Iowa. (c) Same as Figure 11b
but for soybeans.
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of Iowa (above the 90th percentile for the period 1895–
2009), whereas the springs of 2008 and 2009 were slightly
below and near normal in temperature, respectively (see
http://www.ncdc.noaa.gov). The summer of 2007 was near
normal, 2008 was slightly below normal, and 2009 was
below the 10th percentile in temperature. The warm spring of
2007, the flooding of 2008, and the cool summer of 2009
appear to have contributed to an early growing season with
high NPP in 2007, a late growing season with low NPP in
2008, and a late growing season with high NPP in 2009,
relative to each other. Thus, with a tower-based network
of mole fraction measurements, we detect climate-driven
interannual changes in crop growth timing that are confirmed
via satellite and inventory methods.
[30] The separation between corn-dominated and

non-corn-dominated sites in CO2 mole fraction minima
(Figure 5), while apparent in all three years, is most pro-
nounced in 2007. This phenomenon, while possibly related
to climate-induced variability, may also be related to crop
management induced changes in the carbon flux. The acreage
of corn planted in Iowa in 2007 increased in response to
demand for ethanol production; the ratio of the area of corn
planted to that of soy in 2007 was 1.61 compared to 1.33 and
1.46 in 2008 and 2009, respectively [USDA-NASS, 2010].
Additionally, Griffis et al. [2010] found a 10% increase in
the contribution of corn to regional flux in the Rosemount
area in 2007 compared to 2008. The increased separation
between the CO2 mole fraction minima could be explained
if the footprints of the corn-dominated sites specifically
included increased corn influence relative to the non-corn-
dominated sites in 2007 compared to 2008 and 2009.

4. Implications for Atmospheric Verification
of CO2 Fluxes

[31] These observations show that, instead of being domi-
nated by white noise, regional-scale CO2 mole fraction net-
works obtain large, coherent signals. These signals are linked
to both local vegetation and weather, and can be used in
designing future observational networks. To put in perspec-
tive the magnitude of the spatial gradients observed in the
MCI, we compare to ocean-continent values and to inter-
hemispheric values, the mean annual spatial gradients that
have been the traditional focus of atmospheric inversion
studies. The ocean-continent gradient during the continental
peak growing season [GLOBALVIEW-CO2, 2011] based on
LEF is about 0.4 ppm/100 km. The annual interhemispheric
mean difference for 2007–2009 is about 3.6 ppm
[GLOBALVIEW-CO2, 2011]. The corresponding gradient is
0.036 ppm/100 km. The median gradient measured in the
MCI region between cross-vegetation site pairs (1.5 ppm/
100 km) is thus a factor of 4 times as large as the ocean-
continent gradient and a factor of 40 times as large as the
interhemispheric gradient. The atmosphere does not “mix
out” these persistent and strong seasonal differences and
gradients in the MCI region. It is therefore particularly
important for regional, subseasonal inversion models to use
accurate transport fields in areas like the MCI.
[32] The seasonal pattern in mole fractions across the

region show persistent spatial structure that appears to be
strongly dependent upon the dominance of corn, with
implications for the footprint size, as well as for network

design. The strong dependence of growing season median
gradients on local vegetation type is consistent with the cal-
culated footprint extents. Similarly, recent studies [Lauvaux
et al., 2008; Gerbig et al., 2009] have documented the
importance of the near field. Using synthetic data, Lauvaux
et al. [2008] found significant error reduction in only about
half of their 300 km ! 300 km domain by including two
towers. If the influence functions are integrated over the
fluxes, the near-field effects can be stronger or weaker,
depending on the surrounding vegetation. Gerbig et al.
[2009], for August 2002 measurements at Harvard Forest,
reported that the fluxes in the nearest 20–60 km contribute
about half of the total, representing a larger near-field influ-
ence than shown in the current study. Centerville and West
Branch, towers separated by only 164 km, differed in terms
of seasonal-scale CO2 patterns, with a median intersite peak
growing season gradient of 3.1 ppm/100 km. These large
gradients corroborate the importance of the near field. The
implication of the two distinct groups (corn dominated and
non–corn dominated) in the current study for network design
is that tower locations should be distributed on the basis of
prior ground-based fluxes, rather than homogenously dis-
tributed on the basis of statistical footprints.
[33] Links among observed CO2 mole fraction, satellite-

derived measures of plant growth, and agricultural inventory
statistics corroborate the ability of the mole fraction to record
crop management- and climate-induced changes in carbon
flux. We are able to detect both regional-scale flooding
effects and more subtle climate-induced changes in the tim-
ing of plant growth.
[34] From a monitoring perspective, it is the spatially and

time-dependent regional flux determined from CO2 mole
fraction measurements and inversion models that is neces-
sary to evaluate inventory methods. The uptake of CO2 of
corn and other crops compared to natural ecosystems during
the growing season leads to a large-scale minimum of CO2
mole fraction in the MCI region [Corbin et al., 2010]. The
NEE over the course of the year (on the larger, national scale)
is almost zero, since crops are harvested, transported, and
used for food and livestock feed, and the crop residues
decompose during the dormant season [West et al., 2011].
Assessing the ability of inversion models to determine the
regional flux is the focus of current research [e.g., Lauvaux
et al., 2011].
[35] In summary, these results suggest that a limited num-

ber of samples across the corn belt of the U.S. upper Midwest
captured the dominant spatial patterns in CO2 mole fraction.
In this region with extensively documented inventory data,
spatial and temporal variability in CO2 fluxes was concur-
rently recorded in tower, inventory, and satellite data. Similar
regional networks, deployed in other parts of the globe, are
therefore highly likely to capture strong regional signals
characteristic of CO2 fluxes. Relatively simple, moderate-
cost, ground-based networks, combined with mesoscale
inverse modeling systems, could be an effective means of
providing atmospheric verification of regional CO2 emis-
sions inventories.
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ABSTRACT

Recent instrumental deployments of regional observation networks of atmospheric CO2 mixing ratios have been

used to constrain carbon sources and sinks using inversion methodologies. In this study, we performed

sensitivity experiments using observation sites from the Mid Continent Intensive experiment to evaluate the

required spatial density and locations of CO2 concentration towers based on flux corrections and error reduction

analysis. In addition, we investigated the impact of prior flux error structures with different correlation lengths

and biome information. We show here that, while the regional carbon balance converged to similar annual

estimates using only two concentration towers over the region, additional sites were necessary to retrieve the

spatial flux distribution of our reference case (using the entire network of eight towers). Local flux corrections

required the presence of observation sites in their vicinity, suggesting that each tower was only able to retrieve

major corrections within a hundred of kilometres around, despite the introduction of spatial correlation lengths

(!100 to 300 km) in the prior flux errors. We then quantified and evaluated the impact of the spatial correlations

in the prior flux errors by estimating the improvement in the CO2 model-data mismatch of the towers not

included in the inversion. The overall gain across the domain increased with the correlation length, up to 300 km,

including both biome-related and non-biome-related structures. However, the spatial variability at smaller scales

was not improved. We conclude that the placement of observation towers around major sources and sinks is

critical for regional-scale inversions in order to obtain reliable flux distributions in space. Sparser networks seem

sufficient to assess the overall regional carbon budget with the support of flux error correlations, indicating that

regional signals can be recovered using hourly mixing ratios. However, the smaller spatial structures in the

posterior fluxes are highly constrained by assumed prior flux error correlation lengths, with no significant

improvement at only a few hundreds of kilometres away from the observation sites.

Keywords: carbon dioxide, atmospheric inversion, air!land interaction, mesoscale modelling, carbon cycle,

data assimilation

1. Introduction

The remaining fraction of atmospheric carbon from

anthropogenic emissions corresponds to about 45% of

the total emissions, due to absorption mechanisms on the

continents and the oceans (Raupach et al., 2008; LeQuéré

et al., 2009). Although anthropogenic emissions are re-

ported with high accuracy at the national level (Gurney

et al., 2009), the role of continental surfaces affected by

a large interannual variability remains critical to better

understand and predict the atmospheric accumulation

(Canadell et al., 2007). Their contribution remains poorly

constrained at the continental and regional levels using

inverse approaches despite consistency at larger scales

(Ciais et al., 2010). Process-based approaches and statis-

tical regression methods for parameter optimisation have

also been used to constrain the carbon pools and the net

flux from the terrestrial vegetation (Ricciuto et al., 2011),
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but large discrepancies remain on the annual and seasonal

time scales (Keenan et al., 2012).

Because of the absence of direct measurements of

regional carbon fluxes, the evaluation of the methods at

policy relevant scales (few 10ths of kilometres) is limited to

intermodel comparisons (Schwalm et al., 2010) and un-

certainty analysis of parameters (Knorr and Heimann,

2001) or based on direct or indirect measurements (Wang

et al., 2001). The Mid Continent Intensive (MCI) experi-

ment focused on an intensively managed area for which

agricultural inventories can provide reliable annual flux

estimates (West et al., 2011), primarily driven by harvest

production of crops. The inventory product can be used to

evaluate other carbon flux estimates from biogeochemical

terrestrial models, model-data fusion approaches, or atmo-

spheric inversions. Despite the high precision obtained

in the inventories from the collected crop harvest data

(Ogle et al., 2010), the uncertainty over the entire region

is increased by lower sampling frequency in the forest

inventory, the parameterisations involved in the inven-

tory models, the high variability from natural ecosystems

and poorly documented semi-managed ecosystems such as

pasture.

Mesoscale atmospheric inversions were used in several

studies as a promising tool to monitor and estimate

regional flux balances at high resolution (Lauvaux et al.,

2009; Schuh et al., 2010; Göckede et al., 2010a). Though

errors in the atmospheric transport model and at the

boundaries limit the potential of the method (Göckede

et al., 2010b; Lauvaux et al., 2012), mesoscale inverse sys-

tems have shown consistent improvements from prior

fluxes over short periods of time (Lauvaux et al., 2009),

and at the annual time scale over the region (Schuh et al.,

2010). Over longer time scales, the assessment of the

regional flux balance implies the capability of capturing

the spatio-temporal variability in the atmospheric CO2

mixing ratios and avoiding persistent errors from the

atmospheric transport models (e.g. Gerbig et al. 2006).

Although prior fluxes, uncertainty assessment and trans-

port models are evaluative components of the system, the

deployment strategy of observation sites affects the poten-

tial of the inversion indefinitely.

The design of regional atmospheric networks amounts

to the optimisation of the observational constraint on the

surface fluxes from the atmospheric concentrations. The

atmospheric integrator effect is one part of the answer, and

actual footprints of hourly tower concentration data were

shown to constrain mainly the few hundreds of kilometres

around each site (Lauvaux et al., 2008; Gerbig et al., 2009).

Even though large-scale signals are present in the concen-

trations, their relative contribution being 20!40% (depend-

ing on the season) of the observed hourly variability (Miles

et al., 2012), but the corresponding flux area is so large that

very little information is carried by the data to constrain

the flux per surface unit. In addition, CO2 fluxes show large

diurnal patterns varying from negative values during the

day to positive during the night (photosynthesis and

respiration), resulting in a substantial loss of information

at the daily time scale (Gerbig et al., 2009). Still, regional-

scale signals and redundant flux signatures in the atmo-

spheric concentrations might inform us about larger flux

balances, depending on the site location and the strength of

the local fluxes.

Previous studies have demonstrated the relative contri-

bution of the near-field fluxes in the hourly atmospheric

observations using a limited number of observation sites

deployed over short periods of time (Lauvaux et al., 2009).

Other studies have used similar modelling tools at coarser

resolution but for non-CO2 trace gases, i.e. those not af-

fected by diurnal cycles, and limited by the resolution to

extract the high time frequency atmospheric information

from the observations (Gloor et al., 2001). In addition to

the use of high-frequency data, the a priori flux spatial

distribution in the region of interest is the second major

element. Once combined in the inverse system, both deter-

mine the potential of convergence to assess the regional

carbon balance and the capability to retrieve the correct

spatial flux distribution. The convergence of the system is

directly related to the spatial and temporal resolutions of

the aggregated fluxes. The aim is to constrain the surface

fluxes which is different from observing signals from

different scales in the observations. The relative contribu-

tion of one scale can limit the use of the others. A crucial

element of the inverse system concerns the detection

of major discrepancies in the prior fluxes. These are not

detectable by any pseudo-data sensitivity study without

prior knowledge of potential biases or errors in the prior

fluxes. If towers are to be deployed, the design of the

network is based on its ability to capture surface flux

discrepancies at any place in the domain. Networks that are

too sparse might have limited potential, whereas too dense

networks are cost-prohibitive and harder to maintain on a

long-term basis. Basically, the distance between observa-

tion sites and critical flux areas has to be determined within

an inverse framework, such that atmospheric signals are

strong enough to optimise the regional fluxes relatively to

other contributors.

We propose here a set of tests based on previous results

over the MCI area (Lauvaux et al., 2012) using different

combinations of tower sites, considering their impacts

on the regional flux balance and its spatial distribution.

We focus on June to December 2007 which allows us to

(1) evaluate the weight of the observations from each site to

help constrain the regional carbon balance and its spatial

distribution and (2) investigate the impact of different prior

error statistics that may be used in network design studies
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and evaluate our own assumptions. This step is critical

before using the error reduction as a reliable estimate for

network design purposes; furthermore, a large correlation

length in the prior flux errors can lead to over-constrained

systems (or under-estimated posterior uncertainties).

2. Methods

2.1. The campaign and the modelling tools

For this study, we used eight CO2 mixing ratio tower sites

that were deployed for the MCI experiment (Miles et al.,

2012). Two towers are part of the permanent tall tower

NOAA network, LEF and WBI; five sites were instru-

mented for the campaign, Kewanee, Round Lake, Mead,

Galesville, Centerville; and the last site is the calibrated flux

tower Missouri Ozarks [cf. Fig. 1(a)]. The inverse system,

described in a previous study (Lauvaux et al., 2012), uses

WRF-Chem meteorological fields at 10 km resolution to

drive the Lagrangian Particle Dispersion Model (Uliasz,

1994) and generates the concentration footprints over

the entire period of observations. The prior fluxes were

simulated with the SiBcrop model, with an improved

phenology for crops based on several eddy-flux sites over

the MCI (Lokupitiya et al., 2009). The inverse CO2 fluxes

are at 20 km resolution over the domain at a weekly time

step. We solve for two flux components (one for daytime

and one for nighttime). We also solve for boundary

condition concentrations from the CarbonTracker system

corrected by aircraft data (Lauvaux et al., 2012). The

boundary conditions are additional unknowns here but

in practice act as an additional source of uncertainties,

reducing the overall error reduction of the different cases

equally.

2.2. Inverse methodology

The method used in the paper was described in the study

of Lauvaux et al. (2012). The state vector (x) that includes

the three components described above (daytime fluxes,

nighttime fluxes and boundary inflow) is obtained by the

following equation:

x ¼ x0 þ BHT ðHBHT þ RÞ%1ðy %Hx0Þ (1)

where x are the unknown fluxes and the boundary

conditions we invert for, x0 the a priori flux and boundary

estimates, y the observations, H the linearised transport

matrix and R and B the error covariance matrices of the

observations and the a priori fluxes, respectively.

We can define the posterior error covariance matrix A

for fluxes given by the following expression:

A%1 ¼ B%1 þHT R%1H (2)

In the study, we perform error reduction analyses as if

exploring optimal tower locations for a network design

study. The error reduction is the ratio between flux error

variances before and after inversion [1% ðrA=rBÞ] with

values ranging from 0 to 1, with sA the posterior flux root

mean square error (RMSE) and sB the prior flux RMSE.

A value of 0 indicates no improvement of the initial prior

errors. Between 0 and 1, the value is interpreted as a ratio

of error reduction, referred in percentage in this study.

In addition, we define prior flux error structures in

two different ways: first by considering the ecosystem dis-

tribution in space and a correlation length L, and second

only by the correlation length L (Lauvaux et al., 2012).

The distance L remains difficult to rigorously estimate but

its impact on the retrieved fluxes can be large (Wu et al.,

2011). Additional tests will be performed based on our

subsampled network inversions, to evaluate the impact of

the flux corrections on the CO2 concentration mismatch of

the observation sites not used in the inversion.

2.3. Evaluation of the assumptions in spatial

structures of the prior flux errors

2.3.1. Ratio between the observational constraint and

prior flux errors. To evaluate the impact of the correla-

tion structures on the solutions, we use the degree of

freedom for the signal (DFS) from Rodgers (2000). A large

(respectively, small) correlation length reduces (respec-

tively, increases) the DFS. The DFS was defined following

Bocquet (2009) as:

DFS ¼ TrðBHT ðHBHT þ RÞ%1HÞ (3)

The DFS is used in this study to investigate the impact of

the correlation length on the solutions. Small DFS values

compared to the number of observations indicates that

the posterior fluxes are constrained mainly by the prior

uncertainties. Large correlation lengths lead to less infor-

mation brought by the observations. We discuss the DFS

values in Section 4.

The variances in the prior flux errors vary slightly from

one case to the next to conserve the same ratio between the

observational constraint and the prior flux uncertainties.

This balance was ensured by estimating the normalised

distance l of the x2 test as follows:

k ¼
1

n
½ðy %Hx0Þ

TðHBHT þ RÞ%1ðy %Hx0Þ' (4)

with n the degree of freedom of the state vector. A value

close to one indicates reasonable estimates of prior errors in

the inverse system, balancing the weight of the atmospheric

observations and their related errors (y and R) compared

with the initial uncertainties in the fluxes (x0 and B) and
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(a) Prior fluxes from SiBcrop (b) Inversion TR0: Complete network of towers

(c) Inv. NON-CORN: no Corn Belt sites (d) Inv. CORN: Corn Belt sites only

(e) Inv. SPARSE: Sparser network (f) Inv. MIN: Minimal network

Fig. 1. CO2 fluxes from June to December in TgC.degree"2 over the MCI from the SiBcrop vegetation model (a), our reference case

TR0, i.e. the inverse system using the entire network of observation sites (b), using only the sites outside of the Corn Belt area (c), using the

sites only within the Corn Belt area (d), using a sparser network (e) and using a minimal configuration of two sites (one in the Corn Belt and

one out) (f).
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the number of independent elements in the state vector. The

values of l range between 0.75 and 1.25 for all our tests, and

the corresponding correlation lengths from 50 to 300 km,

including both biome-dependent and non-biome-dependent

structures. We increase (or decrease) the RMS (diagonal

elements of B) to compensate for changes in the correlation

length based on the values of lambda for each case.

2.3.2. Leave-One-Out Cross-Validation. We evaluated

the gain from the inversion in terms of mixing ratio

mismatch with Leave-One-Out Cross-Validation (LOOCV)

tests. We performed eight consecutive inversions using

seven of the eight available tower sites. The remaining site

is used as a validation of the inverse fluxes. The simulated

mixing ratios of the validation site are reconstructed using

its influence functions and the fluxes from the correspond-

ing 7-tower inversion. The mixing ratio mismatch at the

validation site i (Di#y"Hxj) is computed before (xj#x0)

and after inversion (xj#x). The mean of the mismatch

represents the impact of the correction of weekly biases

in the observation space (mixing ratios). The RMSE of

hourly mismatches represents smaller-scale corrections

(from hourly mixing ratios) produced by changing wind

conditions at each site. These tests provide an assessment of

the overall gain after inversion, gain from corrections on

the weekly fluxes and in space around the validation site.

Considering that most tower mixing ratio footprints do not

overlap between sites, the LOOCV evaluates primarily the

veracity of the spatial correlation in the prior flux errors.

3. Results

The amount of information from the observation network

varies with two major elements: the spatial density of

the network and the correlations of the prior flux errors.

To explore these two components, first we define several

subnetworks using only some of the eight available sites,

and second, we assume different prior flux error structures

with an evaluation of their impact.

3.1. Regional CO2 flux balance

In this section, we diagnose the information content of

the observations using different combinations of sites to

constrain the regional balance. We defined four cases as

follows: the first network excludes sites in the corn belt

(Round Lake, West Branch and Kewanee) referred here

as NON-CORN; the second case uses sites within the

corn belt only (the ones precedently excluded) referred

as CORN; a sparser network of observations but homo-

geneously distributed in space (excluding Centerville,

Galesville and Kewanee) referred as SPARSE; and finally

the minimum configuration with one site in the corn belt

area and one for the mixed grassland-crop-forest area,

Round Lake and Centerville, referred as MIN.

We present the inversion-based regional balances using

the different network configurations as shown in Table 1.

Table 1 underlies the capacity of the system to constrain the

overall regional balance of the MCI domain and displays

the averaged CO2 fluxes over corn-dominated areas and

non-corn-dominated areas to highlight the attribution of

flux corrections over the domain in the two most distinct

vegetated areas. Considering the MIN case, the density

of the network is apparently not the main leverage to

constrain the regional balance. Only two towers are used in

this case, and the final balance and area averaged fluxes are

close to the initial full network inversion result (about

30TgC difference or less than 1-sigma from the posterior

uncertainties). In the CORN case using three sites in the

corn belt area, we observe that the correction is weaker

(only "49 TgC instead of "84 TgC). The locations of the

Table 1. Regional CO2 flux balance from June to December 2007 in TgC over the MCI (first line), and averaged fluxes over the corn-

dominated area (which corresponds to 23% of the domain) and out of it in gCm"2, for Sibcrop (prior fluxes), using the complete

observation network (posterior or TR0), using towers around the corn belt (NON-CORN), using towers within the corn belt area (CORN),

using a sparser network of towers (SPARSE), and using only two towers (MIN)

Prior

Posterior

(TR0)

NON-CORN

(five sites)

CORN

(three sites)

SPARSE

(five sites)

MIN

(two sites)

Regional carbon

balance (TgC)

"110 "194 "179 "159 "185 "177

Total flux error (TgC) 35.5 32.1 32.7 33.1 32.5 33.6

Corn area averaged

flux (gCm"2)

"335.7998.6 "343.84988.16 "280.62992.39 "372.38988.92 "328.9989.56 "336.85992.03

Out-of-corn averaged

flux (gCm"2)

"27.3936.13 "110.71932.86 "114.49932.87 "69.56934.75 "108.23933.26 "97.75934.55

NETWORK DESIGN FOR CO2 FLUX MESOSCALE INVERSIONS 5



towers seem more important than the absolute number of

sites. Considering the averaged fluxes over corn-dominated

areas and grass-dominated areas, the complete network

case (referred here as posterior) indicates a slight increase

of the uptake in corn-dominated areas and an important

increase elsewhere (cf. Table 1). The posterior uncertainties

over the domain for the different cases vary from 5 to

10% error reduction compared to the initial uncertainties.

A large fraction of the domain being unconstrained by

the observations, the error reduction is relatively small

for the different cases. Although most cases as can be seen

in Table 1 show similar flux corrections for the corn area

(between the prior and posterior values), the NON-CORN

case shows here an opposite flux correction in the corn area

due to the absence of observation sites. We investigate the

spatial distribution of the corrections in the next section.

3.2. Spatial flux distributions

The spatial distribution of the corrections appears criti-

cal around the central Corn Belt, and the net fluxes

averaged over the corn area remains similar (Table 1).

The initial spatial distribution (prior flux) was centred

and highly correlated with the corn-dominated area

[Fig. 1(a)]. In the posterior fluxes, the sink area is extended

to the South (northern Missouri) and to the North!
West and North!East (South Dakota and Wisconsin)

[cf. Fig. 1(b)].

With the inversion including only corn sites [Fig. 1(d)],

the averaged fluxes in the non-corn-dominated areas show

the smallest increase in uptake. The uptake in the north-

eastern part of the domain remains low [case CORN and

MIN, or (d) and (f) in Fig. 1]. In the other cases, both

Galesville and LEF towers introduce an increase of

the uptake [NON-CORN and SPARSE, or (c) and (e) in

Fig. 1], i.e. extending the sink area to the North East. The

most variable and important change compared to the initial

setup occurs in northern Illinois where there is the largest

uptake in the posterior fluxes [Fig. 1(b)]. Comparatively,

the prior fluxes showed a maximum around Round Lake

in northern Iowa and southern Minnesota [Fig. 1(a)].

The maximum in Illinois is present only if the Kewanee

or West Branch sites are included [CORN and SPARSE, or

(d) and (e) in Fig. 1]. Other cases produce the maximum of

uptake in northern Iowa and southern Minnesota (MIN),

or decrease the uptake but without detecting the northern

Illinois area (NON-CORN). The tower sites at Centerville

or Galesville are located about 300 km from northern

Illinois but do not produce an increase in uptake.

3.3. Spatial distribution of flux corrections

We present the flux corrections shown in Fig. 2 to highlight

the contribution of different combination of towers applied

to the prior fluxes. Across the four cases, the main spatial

patterns are conserved indicating consistent corrections

across towers. The only case which indicates a disagree-

ment between tower corrections is NON-CORN, with an

important positive correction around Round Lake. The

presence of Round Lake in the other cases induces little to

no change around the tower location. Overall, the intensity

of these changes is highly variable. In most cases, the large

uptake around Round Lake is decreased, the NON-CORN

case being the most positive correction in this area. Once

again, the corrections appear only when towers are in

the area of interests (e.g. the negative correction around

Centerville in NON-CORN and MIN) or when two towers

surround the area (Ozarks and WBI also decrease the

Centerville area in SPARSE). The positive correction

around Round Lake is produced in all cases. Otherwise,

the corrections disappear if the closest tower is missing. As

an illustration of the prior error correlation impact on the

retrieved fluxes, the Fig. 2(b) shows the flux corrections if

biome-related structures are removed from the prior errors.

We will discuss this point in Section 4.

3.4. Theoretical error reduction and observed flux
corrections

We now consider an experimental network design based on

the error reduction only. We compare here the theoretical

benefits from our system (without using observations) to

the actual changes in the posterior fluxes (with observa-

tions). Because the two are basically related to the prior

flux error structures, we investigate the impact of different

correlation structures on the flux corrections and the error

reduction. The impact of the prior fluxes themselves was

investigated in the study of Lauvaux et al. (2012).

The reference setup TR0 includes all the towers in the

region and flux error covariances based on ecosystems and

distance (L#300 km). The error covariances are based on

model-data mismatch and correlation analysis using several

eddy-flux sites over the domain (Lauvaux et al., 2012). As a

comparison, for a similar correlation length but without

considering ecosystems, the overall constraint in our system

is equivalent to L#100 km. The biome dependence, as

defined here, reduces the initial correlation length (cf. Fig.

3). We then ran our 7-month inversion at the weekly time

scale. The error reduction in Fig. 3(a) is about 30!40% in

the vicinity of the towers and about 10!20% in the first

100!200 km. We then ran a second inversion (case TRD)
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(a) TR0: Complete network of towers (b) TRD: Complete networkof towers
with L = f (distance) (no biome dependence)

(c) NON-CORN: no Corn Belt sites (d) CORN: Corn Belt sites only

(e) SPARSE: Sparser network (f) MIN: Minimal network

Fig. 2. CO2 flux correction from June to December in TgC.degree"2 over the MCI using the SiBcrop prior fluxes, with our reference

case, i.e. the inverse system using the entire network of observation sites (a), with the entire network but the flux error correlation is built on

an exponentially decreasing model only (b), using only the sites out of the Corn Belt area (c), using the sites only within the Corn Belt area

(d), using a sparser network (e) and using a minimal configuration of two sites (one in the Corn Belt and one out) (f).
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using the same standard deviations for every 20 km by

20 km pixels, but prior flux error correlations are based

on the distance only, with an exponentially decaying model

(L#300 km). The simpler structure of the prior flux errors

here induces the propagation of corrections in space from

grass to corn dominated pixels for example. This assump-

tion seems somewhat unrealistic as Net Ecosystem Ex-

change (NEE) for corn is driven by a different phenology

and several human-driven processes such as irrigation or

fertilisation. Corrections applied to corn-dominated pixels

might not be applicable to grassland areas as vegetation

responses and error sources might be highly variable across

these ecosystems. The spatial distribution of the error

reduction [Fig. 3(a) and (b)] for the two cases shows large

differences. The second case (TRD) shows exponentially

decreasing error reduction from the tower locations as

prescribed by the error correlations.

The flux corrections from these two cases [cf. Fig. 2(a)

and (b)] show clear differences even though their respective

regional carbon balances remain close, with "194 TgC for

the TR0 case and "179 TgC for the TRD case. Posterior

uncertainties and fluxes are highly affected by the assump-

tions in the prior error statistics even if the main patterns

remain somehow similar. The posterior flux errors for

the TR0 case are about 32TgC (with 35.5TgC error in the

prior fluxes), whereas the TRD case posterior errors are

about 25.2 TgC (with an error of 30.5 TgC in the prior

fluxes). The relationship between prior error structures and

posterior errors and fluxes has a consequent impact on the

flux errors, but little impact on the regional carbon balance

(posterior fluxes). In Section 4, we investigate the observa-

tional constraint and the validity of the flux error correla-

tion assumption by estimating the degree of freedom of

the signals (DFS) (Rodgers, 2000; Bocquet, 2009) and by

evaluating the flux corrections on towers that were not used

in the inversion from our different cases (LOOCV).

4. Discussion

4.1. Optimal choice of prior error structures

The different inversions performed here and their inter-

pretation are highly dependent on the prior error covar-

iances. Wu et al. (2011) noted the impact of incorrect flux

error correlations in the prior error covariance matrix.

The definition of prior error structures in space remains

difficult to estimate quantitatively, and several studies

discussed the estimation of the potential correlations using

different techniques. Although geostatistical approaches

propose to diagnose these structures from different ob-

servational datasets (Michalak et al., 2005), other inverse

studies have optimised these distances based on correlation

analysis of biogeochemical models (Rödenbeck et al., 2003;

Chevallier et al., 2006) or derived them from climatological

and ecological considerations (Peters et al., 2007). At large

scale, the ill-conditioning of the inverse problem leads to

significantly long spatial flux error correlations in order to

keep a sufficient observational constraint. Here, a large

(a) TR0: Complete network of towers (b) TRD: Complete networkof towers
with L = f (distance) (no biome dependence)

Fig. 3. Error reduction in % using all the towers and prior flux errors with ecosystem-based standard deviations (RMS) and spatial

correlations based on ecosystems and distances between pixels (case TR0) (a) and the second case considering correlations with distance

only (exponentially decaying model) (TRD) (b).
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number of observations and the relatively short distances

between sites tend to rapidly reduce the DFS and lead to

the convergence of the solutions. The estimation of flux

error correlations, if they exist, is required to obtain precise

estimates of the a posteriori flux errors. We performed

several tests using only a subsample of the complete net-

work, with several observation sites available for a cross-

validation of the corrections. We considered here the

case CORN, using only Round Lake, West Branch and

Kewanee sites, the other five being used as independent

observations to evaluate the flux corrections. We define

three cases with different correlation structures, the first

one using a correlation length of 300 km, exponentially

decaying with the distance, and combined with the biome

map of the region (Lauvaux et al., 2012) (referred here as

TR0), then a second case using correlation length of 300

km only (TRD) and finally a third case with a correlation

length of 50 km (L50). We estimated the gain in terms of

the final CO2 concentration mismatch compared to the

initial (a priori) model-data mismatch at the five remaining

towers, in ppm. Over the 28 periods of inversions from

June to December, the gain for the cases TR0 or TRD

improves the initial mismatch by 0.823 and 0.861 ppm,

respectively, compared to the case L50 with only 0.561 ppm.

On average, the simpler exponentially decaying model

(#TRD) shows a larger gain compared to the more

complex vegetation-based description TR0, but 4 of the

28 periods show small net degradations of the initial

mismatch, against two for the TR0 case. Similarly, the

DFS drops from 284 for the case L50, and 281 for the TR0

case, down to 59 for the case TRD, indicating an important

increase of the apparent observational constraint due to the

correlation length in the flux errors. This first analysis

shows that the larger flux correlations of 300 km seems the

most profitable assumption in terms of gain. But the

presence of degradation of several periods (4 out of 28)

indicates that more refinement is required, including

temporal variability for example. The gain increasing

with the correlation length might also correspond to the

overall decrease of the regional flux bias. This overall gain

remains valid at the regional scale, but the inherited

structures in space in the posterior fluxes might be artificial,

constrained by the assumed correlation length more than

the data and their adjoint transport.

4.2. Cross-validation of posterior fluxes

We performed LOOCVs to evaluate the gain at each tower

in terms of the CO2 concentration mismatch. The principle

of cross-validation relies on eight inversions using seven

towers only out of the eight available concentration sites.

The retrieved fluxes are then propagated through the

influence function of the validation tower. The improve-

ment in the concentration mismatch at the eliminated tower

is a direct evaluation of the posterior fluxes. We computed

both RMSEs and means for each of the inversions with a

different validation tower. This analysis evaluates the

assumptions made in the prior flux errors (spatial correla-

tion) in terms of systematic error corrections and sub-

weekly corrections (RMSE). The results are presented in

Table 2. The means show that all the inversions, but one

provides smaller mismatch at the validation tower. We

conclude here that the inversion improved the fluxes in

terms of systematic errors at the weekly timescale. In terms

of RMSE, the results indicate no or little decrease in

the concentration mismatch compared to the reference

inversion (using the eight concentration towers), with an

increase of the mismatch in three cases. The absence of

Table 2. Mixing ratio residuals in ppm for each tower, averaged over the 7 months (mean) and their related RMSE at the hourly time

scale before and after inversion. The three lines correspond to the initial mismatch between modelled and observed mixing ratios (a priori),

posterior residuals after inversion using the eight towers (a posteriori) and residuals from each inversion excluding the tower indicated in

the first line, used for validation (LOOCV)

Centerville Kewanee Round Lake Mead Galesville Missouri WBI LEF

A priori

Mean "1.708 "1.248 "0.583 "1.025 "1.912 "0.578 "1.203 "0.167

RMSE 7.641 7.169 7.284 6.858 7.970 7.884 8.341 6.786

A posteriori

Mean "0.103 "0.028 "0.104 "0.074 "0.162 0.102 0.467 0.171

RMSE 3.711 3.757 3.638 3.511 4.244 4.067 4.269 3.837

LOOCV

Mean "1.045 "0.283 "0.613 "0.883 "1.371 "0.119 0.235 0.865

RMSE 7.003 7.564 7.479 6.794 7.602 7.727 7.656 7.848

Residuals in LOOCV correspond to cross-validation of the inverse fluxes retrieved from the Leave-One-Out experiments. Values closer to
zero compared with the a priori mismatch indicate an improvement.
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improvement in the RMSE shows that the subweekly

variability due to smaller-scale flux signals is not captured

correctly compared to the reference inversion. The spatial

error correlation might be over-estimated in our setup,

even though the regional balance with fewer towers is

consistent with previous findings. The small structures

in the flux corrections are not realistic at the validation

tower. The extent of corrections in space is artificial

and only helps to improve larger-scale systematic errors.

However, the two inversions without WBI or Kewanee

show almost identical improvements compared to the

reference inversion in terms of means of the mismatch.

The redundancy of the information from these two towers

is in agreement with earlier findings, co-located in the corn

belt area.

4.3. Estimation of prior error structures

From our analysis, we can disaggregate two correction

terms from the flux correction, one due to local atmo-

spheric signals, and one induced by the presence of spatial

correlations in the prior flux errors. The second seems

consistent following our previous tests. Even if not perfect,

long correlation lengths (L!300 km) showed an improve-

ment compared to the initial CO2 concentration mismatch,

and better results than smaller correlation lengths (L!50

km). For the first term, the simulated atmospheric mixing

drives primarily the size of the main area of influence on

the concentrations. The model resolution might affect the

dimensions of the concentration footprints noting that

horizontal diffusion is related to model parameterisation

optimised at given resolutions. Comparisons are needed to

explore the sensitivity of the footprint size to the model

configuration. Although the two terms might seem contra-

dictory, they reflect two different facts. The first term

represents directly observed flux signals in the atmospheric

concentrations. The second term represents the common

sources of errors in the fluxes. This term is problematic in

the sense that corrections are distributed spatially, even

though the observations alone were not able to constrain

these areas initially. Chevallier et al. (2006) investigated

the presence of flux error correlations using eddy-flux

sites, at a daily time scale. The temporal scale of this study

was shorter than the present pixel-based inversion at the

weekly time scale. They found no clear spatial structures

in the prior flux errors. Hilton (2011) optimised parameters

of a vegetation model with 100 eddy-covariance NEE

measurement sites across North America and diagnosed

the covariances in the residuals. The most likely correlation

length was about 400 km at the monthly time scale and

200 km at the 10-day time scale. Before that, Rödenbeck

et al. (2003) performed model sensitivity tests at the

monthly time scale and diagnosed correlation lengths of

about 1200 km. Michalak et al. (2005) proposed the use

of the Maximum Likelihood algorithm to derive prior flux

error correlations based upon observations which were

a direct result of those fluxes. While the method is very

informative for the modellers to evaluate the balance

of the inverse system, the reality of flux error correlations

has to be investigated, not only to fit the inverse setup

because of other limiting factors (model resolution,

number of observations, dimension of the matrices to

invert), but also to represent the real structures of the prior

flux errors.

5. Conclusions

We have evaluated here the CO2 posterior fluxes over

the corn belt of the US Midwest by subsampling the

MCI tower network. Atmospheric inversions at 20-km

resolution were performed for a 7-month period, with

similar assumptions but variable observational con-

straints. These sensitivity tests correspond to different net-

work configuration, including a sparser network of

observations or ecosystem-specific networks. The four

different subsampled networks showed consistent regional

carbon balances despite tower removals (!178 TgC9 13).

The DFS showed that the posterior fluxes are constrained

mainly by flux error correlation when the correlation length

is larger than 150 km. The gain in the final concentration

mismatch indicates an improvement of the overall regional

fluxes with large correlation length (300 km or more) but

might correspond to artificial extension of the regional

bias correction rather than realistic spatial structures in

the posterior fluxes. This preliminary study shows that

the MCI campaign provides a sufficient number of obser-

vations to constrain the Corn Belt carbon balance over

the 7-month period, but the spatial distribution of the

inverse fluxes is still under-constrained with too little obser-

vational constraint compared to the assumed flux error

structures.
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Abstract. An intensive regional research campaign was conducted by the North2

American Carbon Program (NACP) in 2005 to study the carbon cycle of the highly3

productive agricultural regions of the Midwestern United States. Forty-five di↵erent4

associated projects were spawned across five U.S. agencies over the course of nearly a5

decade involving hundreds of researchers. The primary objective of the project was6

to investigate the ability of atmospheric inversion techniques to use highly calibrated7

CO2 mixing ratio data to estimate CO2 exchange over the major croplands of the8

U.S. Statistics from densely monitored crop production, consisting primarily corn and9

soybeans, provided the backbone of a well studied “bottom up” flux estimate that was10

used to evaluate the atmospheric inversion results. Three di↵erent inversion systems,11

representing spatial scales varying from high resolution mesoscale, to continental, to12

global, coupled to di↵erent transport models and optimization techniques were compared13

to the “bottom up” inventory estimates. The mean annual CO2-C sink for 2007 from14

the inversion systems ranged from 120 TgC to 170 TgC, when viewed across a wide15

variety of inversion setups, with the “best” point estimates ranging from 145 TgC to16

155 TgC. Inversion-based mean C sink estimates were generally slightly stronger, but17

statistically indistinguishable, from the inventory estimate whose mean C sink was 13518

TgC. The inversion results showed temporal correlations at seasonal lengths while week19

to week correlations remained low. While the comparisons in this paper show that the20

MCI region-wide C sink is robust across inversion system and spatial scale, significant21

di↵erences in inversion-based flux estimates remain at finer spatial scales of 100km -22

200km. Furthermore, we present comparisons between atmospheric transport fields for23

the two regional inversions and show that it is critical that regional inversion systems24

must carefully account for biases in the boundary inflow of CO2.25
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Introduction26

For over half a century, the analysis of trace gases in the atmosphere has been a rich27

source of information about the contemporary global carbon cycle. Early studies of the28

secular trend and seasonal cycles of CO2 mixing ratio revealed the accumulation of fossil29

carbon and the striking role of terrestrial ecosystems in planetary metabolism, and by30

the mid-1960s scientists had used spatial patterns in CO2 and its isotopic composition31

to establish rates of atmospheric mixing [Bolin & Erickson, 1959; Bolin & Keeling,32

1963], the penetration of anthropogenic CO2 into the oceans, and the existence of a33

net sink in the terrestrial biosphere [Bolin & Keeling, 1963]. Beginning in the 1980s,34

the global network of sampling stations from which accurate CO2 measurements were35

available expanded rapidly with accurate CO2 measurements to support carbon cycle36

research. Denser data allowed formal estimation of the spatial patterns of sources and37

sinks at continental and ocean basin scale using inverse modeling, which also required38

quantitative accounting for atmospheric transport [Pearman & Hyson, 1981; Fung et al.,39

1987; Heimann & Keeling, 1986; Tans et al., 1990]. A community of global CO2 inverse40

modelers emerged during the 1990s and performed a series of atmospheric transport41

intercomparison (TransCom) experiments. TransCom documented the sensitivity42

of estimated source/sink patterns to di↵erences in advection, turbulence, and cloud43

transport among atmospheric models [Law & Simmonds, 1996; Denning et al., 1999;44

Gurney et al., 2002; Baker et al., 2006].45

Despite decades of measurements, modeling, and field experiments, future46

interactions between the carbon cycle, climate, and management now constitute a47

leading source of uncertainty in projections of 21st century climate change. Experiments48

with fully coupled carbon cycle-climate models show a range of over 250 ppm in CO249

by 2100 given identical fossil fuel emissions [Friedlingstein et al., 2006; Solomon et al.,50

2007]. Estimation of space/time variations of carbon sources and sinks by transport51

inversion provide an important constraint on coupled Earth system prediction. Tracking52
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interannual variations in carbon sources sinks using transport inversion of atmospheric53

observation has become nearly routine in the 21st Century [Peters et al., 2007, 2010].54

However, the relatively sparse data still requires aggressive regularization through55

the use of Bayesian priors [Baker et al., 2006], geospatial smoothing [Michalak et al.,56

2004], or pre-aggregation of sources and sinks into coarse basis functions within which57

space/time patterns of flux are assumed to be known [Peters et al., 2007].58

Although Bayesian inverse methods provide estimates of uncertainty, formal59

evaluation of the accuracy of regional sources and sinks has remained elusive, because60

we lack reliable independent measurements of these quantities. Surface exchanges61

of CO2 can be estimated locally by eddy covariance [Baldocchi et al., 2012], but62

the area represented by these estimates is many orders of magnitude smaller than63

can be estimated from available concentration data. Field experiments during which64

greatly enhanced data collection is performed temporarily over a limited region and65

time period has provide opportunities to evaluate transport inversions (RECAB:66

[Filippi et al., 2003], ChEAS: http://cheas.psu.edu/ [Chen et al., 2008], LBA:67

http://daac.ornl.gov/LBA/lba.shtml, COBRA: [Gerbig et al., 2003], CERES: [Dolman68

et al., 2006], ORCA: [Goeckede et al., 2010a]). Even for such limited regions, local69

bottom-up fluxes (estimated from surface data) must be interpolated across orders of70

magnitude of spatial scales to provide a quantitative constraint on top-down fluxes71

(estimated from atmosphere measurements). Evaluation of regional inversions using72

bottom-up interpolation can also be informed by studies using synthetic observations73

[Gerbig et al., 2003; Lin et al., 2003; Zupanski et al., 2007; Schuh et al., 2009; Lauvaux74

et al., 2009]. These studies have shown that regional inversions always involve a75

trade-o↵ between the stronger flux constraint due to dense atmospheric observations76

and the weaker constraint because of the influence of unknown tracer fluxes at the77

lateral boundaries. It is also possible to formally estimate lateral boundary fluxes as78

well as surface fluxes [Lauvaux et al., 2008], but this necessarily dilutes the information79
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content of the observations. The influence of lateral boundary fluxes increases as fluxes80

are estimated over smaller domains. Even over small regional domains with dense81

measurements, the inverse problem must be regularized by applying aggregation of82

some kind to reduce the number of estimated fluxes. Advances have also been made in83

formally combining available estimates from both inventory and inversion studies into a84

single estimate of the kind often needed by policy makers [Cooley et al., 2012].85

As part of the North American Carbon Program [Wofsy & Harriss, 2002; Denning,86

2005], a field experiment was designed to evaluate innovative methods for CO2 flux87

inversion and data assimilation by performing quantitative comparison of top-down88

and bottom-up estimates of a regional carbon budget. The experiment was performed89

over a relatively flat, heavily managed landscape in the mid-continent region of North90

America [Ogle et al., 2006] Detailed information on surface carbon fluxes was analyzed91

to provide highly resolved maps of uptake and release of CO2 by agriculture, forests,92

fossil fuel combustion, and human respiration [West et al., 2011]. Surface fluxes over93

croplands were estimated by eddy covariance [Verma et al., 2005]. Atmospheric CO294

concentration was measured using in-situ analyzers installed on a ring of communication95

towers in the region [Miles et al., 2012], and vertical profiles of CO2 were measured by a96

short dense aircraft sampling campaign [Martins et al., 2009].97

This paper presents an intercomparison of three estimates of regional carbon98

balance over the area of the NACP mid-continent intensive (MCI) experiment, and99

an evaluation of their respective accuracy relative to bottom-up flux maps. The three100

inverse analyses presented span a range of spatial domains from global to regional, and101

also a range of resolutions and di↵erent techniques for regularization. Comparing their102

results allows us to explore, for the first time, the strengths and weaknesses of many103

methodological choices in regional carbon analysis for a field experiment in which we104

have uniquely detailed independent data.105

106 Figure 1.
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Materials and Methods107

Inversions108

Most inversions use the same basic principles and structure that includes109

observations, a priori estimates for CO2 fluxes, and a mapping from fluxes to110

observations based upon an atmospheric transport model. For those unfamiliar with111

the technique, it is best to initially think of the method as being built upon a standard112

regression problem with a vector y of observations, vector � of regression coe�cients,113

and H matrix which presents the sensitivity of a particular observation to all possibly114

surface fluxes being considered. There is a rich literature on the subject and several115

applications to CO2 fluxes [Tarantola, 1987; Evensen, 1994; Enting et al., 1994; Bishop116

et al., 2001; Whitaker & Hamill, 2002; Tippett et al., 2003; Zupanski, 2005; Peters117

et al., 2007; Lokupitiya et al., 2008]. A simplified flowchart of the atmospheric inversion118

technique is provided in Figure 2. The goal of all three inversions is to provide119

time-varying mean and covariance estimates for a set of spatial carbon fluxes covering120

the MCI region. However, due to the scale di↵erences among the inversions, the actual121

number of regions/parameters optimized by the inversions di↵ers. Additionally, the122

finer resolution regional models require an estimate of the boundary CO2 inflow into the123

region. Details are summarized in Table 1.124

CarbonTracker The first inversion used comes from the operational NOAA data125

assimilation system CarbonTracker (CT)[Peters et al., 2007]. This system is based on a126

sequential ensemble Kalman filter (EnKF) framework and provides global estimates of127

NEE from 2000 through 2009. The main contrast of the EnKF method with a standard128

regression is that the EnKF is performed in a Monte Carlo style, essentially running a129

regression in “sample” space. The most significant advantage to EnKF methods like130

those used for CT is that an explicit transport adjoint is not needed. This makes the131

system very well suited for operational style problems where the creation of new adjoint132
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models would be resource prohibitive. The CT inversion utilizes a 5 week lag filter133

[Bruhwiler et al., 2005] to optimize weekly correction factors for NEE in a limited set134

of ecoregions [Olson et al., 1985]. Biases at time t are related to the estimates at the135

previous two time steps as well as the original prior guess. Transport fields are provided136

by the TM5 model [Krol et al., 2005], and those winds are derived from the ECMWF137

operational forecast model. CO2 fluxes are transported for a maximum of 5 weeks which138

accommodates long-scale global transport e↵ects. Of particular note, the optimization139

of NEE contrasts with the estimate of GPP and respiration fluxes (CSU) or nightly and140

daily fluxes (PSU).141 Figure 2.

CSU inversion The “CSU” inversion technique is a weekly sequential Bayesian142

batch inversion, with occasional modifications to test the propagation of certain portions143

of the mean and/or covariance, similar to a Kalman filter but lacking a non-trivial144

dynamical forecast operator. The inversion domain consists of most of North America.145

An important contrast to the CT system is that total respiration (TRESP) and gross146

primary production (GPP) are simultaneously “corrected” via regression factors, �
TRESP

147

and �
GPP

applied to the a priori fluxes. The model and associated cost function, F(x),148

for a particular week, or “cycle”, are:149

NEE(x, y, t) = �
TRESP

(x, y)TRESP (x, y, t)� �
GPP

(x, y)GPP(x, y, t) (1)

F (�) =
1

2
[(���0)

T B�1
���0

(���0)+(H(�·flux
prior

)�obs)T R�1(H(�·flux
prior

)�obs)] (2)

B and R are the associated error covariance matrices for the a priori flux corrective150

factors and the model/data mismatch, where � is the true but unknown correction151

factor on the fluxes and �0 is the assumed correction factor, a priori. Results presented152

in this paper are calculated independently from cycle to cycle and thus �0 is equal to153
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one and is not propagated through time like in Schuh et al. [2010]. H is the observation154

operator providing the mapping from the flux space to concentration space and obs is155

the observed CO2 vector. The regression style approach prohibits an explicit dynamic156

model of the corrections because there is no dynamical model of the empirical regression157

coe�cients, and thus any week to week propagation is performed ad-hoc.158

The inversion is a “grid” based system where the a priori spatial covariance estimate159

plays the role of the pre-defined ecoregions used in the CT inversion. The inversion160

technique is very similar to that in [Schuh et al., 2010] and is constructed to provide161

estimates over North America utilizing inflow estimates from a global inversion system162

(e.g. CT) as well as interpolated global CO2 from NOAA’s GlobalView (GV) product.163

Given that there are known seasonal and annual biases in the CarbonTracker optimized164

CO2 in the northern midlatitudes, we chose to run inversions with two di↵erent inflows.165

First we ran the inversion with both CarbonTracker optimized CO2. Then we used an166

2D (latitude and altitude) empirical CO2 product based upon the NOAA CO2 network167

and the GlobalView CO2 product [GLOBALVIEW-CO2, 2010; Gourdji et al., 2012] to168

bias correct the CarbonTracker optimized CO2. This was done by calculating inflow169

estimates with both the CarbonTracker optimized CO2 and the GlobalView 2D product170

and then calculating a 3-week moving average di↵erence between the two. This moving171

average was then subtracted from the CarbonTracker optimized CO2 product. The172

intent of this was to remove longer time scale biases while maintaining the synoptic173

variability which is implicitly in the CarbonTracker system.174

The a priori assumptions of the inversion are based on the Simple Biosphere model175

(SiB), a land surface parameterization scheme originally used to compute biophysical176

exchanges in climate models [Sellers et al., 1986],but later adapted to include ecosystem177

metabolism [Sellers et al., 1996; Denning et al., 1996]. SiB has been coupled to the178

Brazilian version of the Regional Atmospheric Modeling System (RAMS) [Pielke179

et al., 1992] and used to study planetary boundary layer (PBL) scale interactions180
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among carbon fluxes, turbulence, and CO2 mixing ratio [Denning et al., 2003] and181

regional-scale controls on CO2 variations [Nicholls et al., 2004; Wang et al., 2006; Corbin182

et al., 2010; Schuh et al., 2010]. Notable di↵erences between the inversion framework183

here and that used in Schuh et al. [2010] was a stronger adherence to fully coupled184

atmosphere-biosphere model using 24 hour exponentially weighted nudging window185

for the horizontal mean winds U and V, humidity, temperature, and pressure, an186

update to the SiB3 biosphere model [Baker et al., 2008], the use of the North American187

Regional Reanalysis (NARR) reanalysis products for the aforementioned nudging, and188

the incorporation of the SiBCROP module for estimation of corn, soy, and wheat fluxes189

[Lokupitiya et al., 2009]. It is important to note that “interior nudging of prognostic190

fields” was used in contrast to a re-initialized forecast which was used in the next191

inversion framework (PSU). The spatial resolution of the transport (RAMS) and fluxes192

was 40 km by 40 km with 3 landcover patches per grid cell. The inversion domain193

consisted of a grid of 200 km by 200 km gridcells over most of North America with194

higher resolution grid of 40 km by 40 km grid cells over the MCI. A priori covariance195

assumptions were largely simplistic using isotropic exponential spatial covariance196

structures over North America with decorrelation length scales of 500 km and 1000 km.197

PSU inversion The “PSU” inversion is also a sequential Bayesian batch198

inversion, such as the CSU inversion, but it is constructed on a 1000 km by 1000 km199

grid of 20 km by 20 km gridcells. Due to limitations of the rectangular model grids200

used in the system, “spatially summed” results will be calculated on the intersection201

of the PSU inversion domain and the MCI domain, which covers approximately 71%202

of the MCI domain. In contrast to the CSU inversion, where respiration and GPP are203

being estimated, daytime ( 06:00 LT - 18:00 LT) and nighttime fluxes (19:00 LT - 05:00204

LT) are estimated in this inversion. For example, this means that the PSU inversion is205

estimating corrections to NEE during the day, while the CSU inversion is estimating206

corrections to both the respiration and GPP components of the NEE separately during207
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the day. The meteorology is derived from 10 km forecasts given by the WRF model with208

boundary conditions provided by the NARR fields. There are a few other significant209

di↵erences between the CSU and PSU inversions. The first di↵erence concerns the210

boundary inflow conditions for CO2. The CSU inversion is driven by estimated marine211

boundary CO2 inflow, while the PSU inversion is driven by CO2 inflow that is estimated212

over the center of the North America continent. The variability in CO2 mixing ratios213

over land is generally far larger than that over the ocean due to the strong diurnal and214

seasonal cycles of carbon exchange over the land, perturbed by synoptic actions of the215

atmosphere. In order to remove biases in the boundary inflow, which was estimated216

from CarbonTracker optimized CO2 mixing ratio fields, aircraft data [Crevoisier et al.,217

2010] was employed to provide weekly bias corrections to each of the four sides of the218

domain. The second significant di↵erence is that the PSU inversion technique solves for219

“additive” corrections to the night/day fluxes as opposed to multiplicative corrections220

such as the CSU model. While these corrections incorporate more detail and have less221

dependence upon the a priori mean fluxes, they also require more ancillary information222

to determine accurate a priori variability that sets the bounds within which the additive223

corrections will be made. The model and associated cost function are:224

NEE(x, y, t) = TRESP (x, y, t)�GPP (x, y, t) (3)

F =
1

2
[(flux�flux

prior

)T B�1
flux�flux

prior

(flux�flux
prior

)+(H(flux)�obs)T R�1(H(flux)�obs)]

(4)

A priori covariance assumptions included smaller decorrelation length scales225

(exponential covariance) of approximately 300 km, compared to the CSU inversion226

which generally employed 500 km and 1000 km for results shown in this paper. The227

smaller decorrelation length scales of the PSU inversion were further decreased by228
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modeling the covariance length scale as a function of ecosystem type, resulting in229

equivalent isotropic decorrelation length scales of approximately 100 km. A last230

di↵erence is the observational constraining of the meteorological forecast which was231

performed in the PSU inversion by running 4 day forecasts and utilizing the last three232

days which allows the first day to be utilized for PBL spinup. More details can be found233

in Lauvaux et al. [2012b].234

Inventory Methods235

A carbon inventory was compiled for the Midwestern region for the purpose236

of evaluating against the atmospheric inversion results. This assessment utilizes237

data on forest biomass, harvested woody products, and agricultural soil C from the238

US Greenhouse Gas Inventory [EPA, 2010; Ogle et al., 2010], in addition to fine239

resolution data on fossil and biofuel CO2 emissions [Gurney et al., 2009], CO2 uptake240

by agricultural crops and grain harvest [West et al., 2011], and CO2 losses through241

livestock and human respiration associated with agricultural products [West et al.,242

2011]. Uncertainties were derived from a Monte Carlo analysis of the variability of the243

original sources in the publications. Carbon emissions are dominated by combustion of244

fossil carbon, in addition to carbon uptake during crop production and export of grain245

from the region, and to a lesser extent from forest growth and incorporation of carbon246

into timber products.247

Observational data248

The CSU and PSU inversions both used data from a ring of 5 towers [Miles et al.,249

2012]. These five sites were located in the MCI region of the North American Carbon250

Program [Ogle et al., 2006] and were outfitted with Picarro cavity ring down analyzers251

[Crosson, 2008] that were calibrated daily and recorded mixing ratios of CO2 every two252

minutes. The analyzers had related measurement errors that were approximately 0.2-0.3253
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ppm for the hourly average mixing ratio data used in the two inversions [Richardson254

et al., 2012]. In addition to these data, both inversions used calibrated CO2 data from255

the 40 meter Missouri Ozarks Ameriflux tower [Stephens et al., 2011] at the southern256

edge of the domain as well as NOAA-ESRL data from the WLEF tall tower in Wisconsin257

at the northern end of the domain and the WBI tall tower in the center of the domain.258

The PSU inversion used data from 100 meters in order to be consistent with the other259

tower heights while the CSU inversion used the highest levels for WLEF and WBI260

which are 400 meters. Furthermore, the CSU inversion used data from continental261

in situ sites located in Canada (provided by Doug Worthy:EnviroCanada) and various262

locations around the United States (provided by Arlyn Andrews:NOAA/ESRL, Tim263

Gri�s:UMN, and Beverly Law/Mathias Goeckede:Oregon State University). In total,264

the CSU inversion used 19 tower sites across North America while the PSU inversion265

used 8 across the MCI region.266

The CT inversion is nearly real-time operational and uses global in-situ as well as267

flask-collected data in its flux optimization [Peters et al., 2007]. An important note is268

that it does not use the ring of towers situated in the heart of the MCI region [Miles269

et al., 2012]. Modified runs were performed with the data from the ring but did not270

significantly alter the flux estimates (personal communication Andy Jacobson) and271

therefore the original and publicly available flux estimates [Peters et al., 2007] were used272

in this paper. The lack of any sensitivity of CarbonTracker to the ring data was one273

particular reason that mesoscale inversions were employed in this study.274

Sensitivity of Flux Estimation Techniques to Transport Fields275

The main sources of variations between the two mesoscale inversions should276

be due to (1) transport uncertainty (winds and PBL characteristics), (2) boundary277

CO2 conditions, (3) inversion methodology and (4) observations (i.e. filtering). We278

investigated (1) and (2) in this research.279



12

Lagrangian Transport The Lagrangian particle model LPDM[Uliasz & Pielke,280

1991; Uliasz, 1993, 1994, 1996] is used by both PSU and CSU. It e↵ectively acts as281

a transport adjoint by diagnosing turbulent motions in the atmosphere as a function282

of high time resolution fields of zonal and meridional winds, potential temperature,283

and turbulent kinetic energy (TKE) output from a parent mesoscale model. This284

allows for the creation of a Jacobian matrix representing the partial derivatives of285

CO2 concentration (at a fixed location) with respect surrounding fluxes of CO2. The286

details of the Lagrangian model that produces the particle movements from the parent287

mesoscale model can be found in Uliasz [1994] and there are many applications in288

the literature [Zupanski et al., 2007; Lauvaux et al., 2008; Schuh et al., 2009, 2010;289

Lauvaux et al., 2012b]. The time of release from the tower, backward in time, is290

notated the “sampling” time while the time associated with a particle’s location over a291

flux producing location is referred to as “flux time”. Particles can be integrated over292

the ’flux’ time for fixed sampling times in order to produce a time series of expected293

concentration at the sampling location. The spatial map of integrated “flux” release294

associated with a sampling time is referred to as the influence function.295

Sensitivity to variations in transport In order to investigate transport296

uncertainty, we constructed diagnostics of the influence functions for each tower, for297

each of the two mesoscale models (RAMS and WRF). The influence functions are298

radially integrated in order to show “influence” as a function of distance from the299

sampling location. In order to remove the e↵ect of di↵ering fluxes in the models, we300

run passive fluxes of 1 umol m�2sec�1 thereby normalizing the two influence functions.301

In order to investigate di↵erences, we partitioned influence functions into (1) daytime302

and (2) nighttime. The CSU passive influence functions are partitioned using a daytime303

filter that consisted of excluding any particle which was over a grid cell with GPP <304

0.01 umol m�2 sec�1, while the nighttime filter used particles in grid cells with GPP305

>= 0.01 umol m�2sec�1. The PSU inversion used 06:00 LT to 18:00 LT to identify306
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“daytime” and 19:00 LT to 05:00 to identify “nighttime”.307

Climatic conditions308

Our results are restricted to a single year in this paper (2007) and as a result it309

is important to characterize the weather in 2007 and how it may have di↵ered from310

the longer term average climate. The year 2007 was the 10th warmest year for the311

contiguous U.S. since 1895 (NCDC). Two seasonal anomalies stand out. A record312

cold anomaly followed very warm early spring temperatures in the Great Plains and313

SouthEastern U.S. This caused extremely heavy losses to crops such as winter wheat314

and recently emerged corn. The record warmth earlier in the season had advanced315

the timing of leaf out and bloom for many fruits across the south leaving them more316

susceptible to damage from the cold outbreak. In addition, the severe drought and317

heat wave over the Southeastern U.S. was probably the most extreme U.S. weather318

event reported in 2007. The drought was particularly strong from mid summer through319

late fall over a large portion of the southeast and the associated heat wave peaked in320

August. Smaller more regional heat waves and droughts were also recorded in the upper321

midwest and Northeastern U.S. Large portions of the mountain west from California322

to Wyoming also recorded unusually dry conditions. In contrast to the drought in the323

Southeastern U.S., the MCI received above average precipitation as it often does during324

periods of drought in the Southeastern U.S. [Dirmeyer & Kinter, 2010].325

Results326

Annual Carbon Budget327

The non-fossil fuel inventory data show a net carbon uptake of 135 TgC for 2007328

and are shown in Figure 3 [West et al, 2010]. Sources of CO2 in the MCI domain329

are dominated by fossil fuel combustion (262 TgC source), in particular the city of330

Chicago, and sinks are dominated by harvest (and export) of grain (132 TgC sink).331
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Smaller sources and sinks due to feedlots, forests, other natural vegetation, and human332

respiration also contribute to the total. Uncertainty for the MCI as a whole is largely333

dominated by the harvest product while relative uncertainties, i.e. standard deviation334

in NEE as function of mean NEE, is largest for the FIA forest product. Using a Monte335

Carlo analysis based on uncertainties in each component flux, we constructed 95%336

confidence limits on the carbon balance (net fossil fuels) of the MCI domain which337

resulted in a sink of -104 to -204 TgC for 2007 (mean: -135 TgC). The results for338

all three inversions are statistically indistinguishable from the inventory results for339

the annual net carbon budget of the region (Figure 4). After correcting the regional340

inversions for boundary inflow, all three inversion estimates show a slightly stronger sink341

than the inventory (CT= -155 +/- 14 TgC, PSU= -140 +/- 16 TgC for reduced ‘PSU342

domain’, CSU= -145 +/- 29 TgC). This is remarkable considering the di↵erent modeling343

setups, domains, and observational constraints for each inversion. The variability in the344

inversion system results was influenced heavily by the a priori flux estimates, i.e. the345

initial range for the “best guess” NEE. The CSU inversion used independent +/- 20%346

standard deviations for GPP and TRESP fluxes which is equivalent to an enormous347

range of possible flux results. This introduces flux scenarios which seem to be well348

outside the range of reasonableness, for example a 20% increase in annual TRESP and349

20% reduction in annual GPP, relative to a balanced biosphere would cause a C source350

on the order of 300 TgC, well outside of what we believe is possible in this area, a priori.351

In contrast, the PSU inversion used a more carefully constructed, well constrained, a352

priori flux covariance estimate based upon regional eddy covariance flux measurements353

[Lauvaux et al., 2012b] which explains the large contrast in the posterior range of the354

estimated sink.355 Figure 3.

Figure 4.

Figure 5.

Overall, the three di↵erent inversions produce similar spatial patterns in annual356

NEE compared to the inventory, with an important sink in the center of the domain357

corresponding roughly to the agricultural area. However, at finer scales, the location358
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of the maximum of uptake and the shape of the sink area varies substantially among359

the di↵erent inversions. Much of the spatial structure in the estimated maps of net360

annual flux is driven by the structure of the Bayesian priors and the optimization361

method in each inversion model. The CSU inversion shows a strong correlation to the362

a priori June/July/August uptake in the region, but with a weaker C sink in Illinois363

and a stronger C sink in western Iowa. The spatial resemblance to the inventory is364

likely due to the strong 500 km to 1000 km a priori decorrelation lengths used in the365

inversion and the strong summer time CO2 deficit. Using a 500 km decorrelation length366

as an example, and noting that the width of Iowa is about 500 km, the inversion would367

assume that a weekly multiplicative error in GPP on one end of Iowa is correlated to an368

error in GPP on the other end of Iowa at a level of 0.37, a priori. Posterior correlations369

were reduced by about half although the reduction was di↵erent for GPP and TRESP370

and not isotropic, instead following the sampling gradient. There did not appear to371

be significant di↵erences between using 500 km and 1000 km on the regional NEE372

(Table 2). The smaller a priori decorrelation length scales used in the PSU inversion,373

approximately five times less that those used in the CSU inversion , allowed much finer374

spatial corrections in the region. The PSU inversion shows a very large sink in the375

eastern part of the domain (northern Illinois), 20% to 30% larger than the inventory376

estimate in the area, as well as a stronger more di↵use sink to the northeast of the377

domain, an area of larger uncertainty in the inventory. In contrast, the strongest sink378

for the CarbonTracker inversion is located in the extreme northwest portion of the379

MCI. This is likely due to a strong flux in the prior for this particular area of the MCI380

and may be a result of inadequate crop modeling in CASA, which does not explicitly381

account for agricultural crops. Northern portions of the MCI have strong influences382

from soybeans and spring wheat but these crops don’t assimilate as much carbon during383

the peak of summer and inventory and eddy covariance studies [Lokupitiya et al., 2009]384

suggest that these crops contribute a weaker NEE signal than soybeans and corn.385
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Scatterplots of annual NEE values for the inversions versus the inventory are shown386

in Figure 6. Consistent with the previous comments, correlations with the inventory are387

higher for the CSU and PSU inversion results than the CarbonTracker results and this388

very likely is a function of the quality of the prior fluxes used. While the accuracy of389

the a priori flux estimate may reduce the amount of data needed in the inversion, it is390

the lack of knowledge of the prior fluxes which demonstrates the importance of densely391

collected CO2 data [Lauvaux et al., 2012b, a]. Although the influence of the di↵erent392

transport models is uncertain, it certainly appears that the di↵erent inversion results393

are very sensitive to the a priori flux patterns and accurate a priori flux estimates play394

a large role in determining correlations between posterior flux estimates and inventory395

results.396 Figure 6.

Although not included in Figure 4, we also assessed the variability in CO2 inflow397

and its e↵ect on the PSU and CSU inversions. For the CSU inversion, this sensitivity398

can be viewed in Table 2 while a general discussion of the inflow uncertainty for both399

regional inversions is provided later.400

Inversion results in time401

Inventory data are available only at the annual scale and thus they can’t be402

compared to inversion results on sub-annual scales. Nevertheless, it would seem prudent403

to provide a quick comparison on how the inversions di↵ered. The time series of results404

for 2007 are shown in Figure 7. In the spring of 2007, the CarbonTracker estimates405

rarely deviate from their prior, which arises from a Carnegie-Ames-Stanford Approach406

(CASA) based model run with annual NEE close to zero. At locations of strong407

deviation, the posterior generally reduces the e✏ux from the prior, pushing the estimate408

to be in closer agreement with the results from the CSU and PSU inversions. One might409

hypothesize that the CT inversion does not have su�cient data to allow deviation from410

its prior, and when it does it e↵ectively increases the annual sink (in the early spring).411
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One also notices much weaker temporal correlation on the scale of weeks in the CT412

inversion compared to the CSU inversion. The PSU inversion posterior is simply the413

prior over this period of time because data was not available from the ring of towers414

until May 2007. The timing of the peak summer drawdown for the area seems to be415

the same for all models, around the middle of July. The CT, PSU and CSU inversions416

agree reasonably well on the magnitude of this drawdown. Nevertheless, there is strong417

variability on the scale of weeks. A noticeable deviation in the CSU inversion appears418

in mid-August and corresponds to the renewal of precipitation over portions of the MCI419

after an extended dry spell. It is likely that the weekly a priori flux estimates from CT420

are more variable than the rest due to somewhat crude flux downscaling from monthly421

CASA data.422 Figure 7.

Results from all three estimates provide posterior NEE estimates less than (i.e.423

stronger sink) their a priori NEE estimates for midsummer when crops are sequestering424

the most carbon. A trend emerges during the late summer where there is a local425

reduction in most of the sinks between mid-July and early August. The summer was426

relatively dry over large portions of the MCI and in particular in northern Iowa and427

southern Minnesota in which a localized drought existed from mid-July until early428

August. These dry conditions likely caused the dramatic decrease in the C sink seen429

in the inversions. It is possible that the corn could have been approaching maturity,430

however, corn is usually still absorbing significant amounts of C at the start of August431

if conditions are favorable. This theory is corroborated by a combination of CO2 flux432

data and soil moisture data (Figure 2, Corbin et al. 2010) as well as Long Term Palmer433

Drought indices. The inversions agree reasonably well in the fall and winter seasons of434

2007, although weekly di↵erences exist particularly in the early fall.435
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Transport Considerations: Variations between mesoscale inversions (CSU436

and PSU).437

Figure 8 shows the contribution from daytime passive flux releases to daytime438

observations for the two di↵erent models. In order to keep comparisons consistent, we439

subset the influence footprints to the smaller PSU transport domain. Additionally, the440

LEF and WBI towers were sampled at di↵erent levels (PSU: 122 meters and CSU: 400441

meters) leading to inherent di↵erences for these two towers. Despite these di↵erences,442

the general strength of influence from each model was similar indicating PBL/wind443

speed regimes that are roughly the same. There is a noticeably stronger local influence444

in the near field in the PSU influence functions and somewhat stronger far-field e↵ect445

in the CSU model as can be seen in the figure. It is possible that variations in the446

modeling of convective processes has some influence on the di↵erences seen in Figure 8447

but this will require further research to evaluate.448 Figure 8.

Figure 9 shows the contribution from nighttime passive flux releases to daytime449

observations for the two di↵erent models. There is a noticeably stronger influence from450

the nocturnal fluxes in the PSU model. The PSU inversion uses data from the 99 meter451

level of WBI tower while the CSU inversion uses data from the 379 meter level. The452

stronger influence in the PSU model from particles released at a lower level, which are453

more likely to be trapped in the nocturnal boundary layer than those released at higher454

levels, likely explains the di↵erence in the influence plots for this tower. However, other455

towers show similarly significant di↵erences. The source of the di↵erences is uncertain456

although likely causes are di↵erences in surface layer mixing schemes in the two models457

as well as the higher near-surface vertical resolution in the PSU WRF runs. The use of458

lower level tower data and the associated stronger nocturnal signal in the PSU model459

may play a part in the stronger C drawdown estimated by the PSU inversions near460

tower locations seen in Figure 5. Further research into the underlying model di↵erences461

and corresponding impact on near surface transport will be needed to fully explain the462
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di↵erences.463 Figure 9.

Boundary Inflow Considerations.464

Regional inversion results can be very sensitive to boundary conditions [Goeckede465

et al., 2010b; Gourdji et al., 2012] and thus this sensitivity was investigated in both466

regional inversions. Inflow boundary conditions for CO2 for the PSU inversion were467

created by using flask data from routine NOAA-ESRL aircraft flights (locations shown468

in Figure 1 ) to bias correct optimized CarbonTracker CO2. An a priori flux bias with469

an upper limit of around +24 TgC was possible as a result of 0.55 ppm average inflow470

bias, which was the average error over the optimization period of the PSU inversion471

[Lauvaux et al., 2012b]. However, it is likely that inflow corrections using weekly vertical472

profile data [Crevoisier et al., 2010] substantially reduced this bias. Boundary inflow473

sensitivity for the CSU continental inversions was tested by comparing inflows derived474

from CarbonTracker optimized CO2 and the GlobalView CO2 product. The GlobalView475

CO2 product is built from the modeling and interpolation of routine NOAA flask and476

aircraft samples in the marine boundary layer. Globalview-based inflow conditions477

for the CSU inversion were then created by subtracting a 3-week moving average of478

the di↵erence between CarbonTracker optimized CO2 and Globalview CO2, from the479

CarbonTracker optimized CO2. In this fashion, the CarbonTracker synoptic variability480

is preserved while being “bias-corrected” by the observed data over longer time scales.481

The use of this bias-correction reduced the CSU sink in the MCI by approximately 33%,482

from 174 TgC to 117 TgC in the “online” case, while reducing the continental sink by483

62% ( 1.6 PgC to 0.6 PgC). This is consistent with the findings of others using similar484

methodologies (Gourdji et al. 2011), although the posterior continental sink estimates485

appeared to match bottom-up inventory results more [King et al., 2007].486
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Discussion487

The MCI study region was chosen in order to take advantage of high quality a priori488

knowledge of crop production in the Midwest as well as large amounts of independently489

collected data on crop yields, and other data, by the United States Department of490

Agriculture [NASS, 2011; West et al., 2010, 2011]. A significant advantage of the study491

region was the fact that this area was relatively flat and devoid of complex topography.492

Complex topography or landcover can make the meteorology, which is essential for493

inversion studies, di�cult to model. In this sense, the project probably represents the494

best possible scenario for a CO2 inversion study; strong, reasonably well-known CO2495

fluxes and somewhat simple meteorology.496

We constructed mesoscale inversions for 2007 and compared a well-known global497

inversion framework as well (e.g. CarbonTracker). NEE flux estimates appear somewhat498

similar among inversions and are reasonable for 2007 in the sense that they are499

statistically consistent with the inventory. These results are promising because they500

show that CO2 inversion methods can be robust, in the sense that they deliver similar501

inverse flux solutions which also are consistent with C inventory results, despite being502

constructed across very di↵erent frameworks, e.g. global to continental to regional, with503

very di↵erent assumptions. Nevertheless, comparisons at spatial scales finer than 100504

km to 200 km and finer temporal scales on the order of weeks, illuminate that di↵erences505

still exist between the various inversion systems.506

The transport fields produced from the mesoscale models displayed a surprising507

amount of similarity. Given the very distinct ways in which the transport was created,508

i.e. di↵erent mesoscale models, PBL schemes, land surface models, and external509

forcing scales in time and space, there were relatively small di↵erences in time-space510

integrated footprints for the towers in the “ring”. The scope of the project only allowed511

for exploratory comparisons on wind speeds, PBL heights, and high time-resolution512

footprints. Among the di↵erences between the transport fields that could not be513
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immediately explained, was the sensitivity to surface fluxes as a function of distance514

from tower. The RAMS model (CSU) appeared to show weaker sensitivity in the local515

vicinity of the tower and a stronger long-distance sensitivity than the corresponding516

WRF model (PSU). The di↵erence could be a byproduct of the di↵erence between517

the external forcings or possibly a more subtle theoretical di↵erence between the two518

models.519

A significant amount of uncertainty in the inversion results appears due to520

variability in boundary inflow of CO2 and to a lesser degree prior flux signals. Inflow521

corrections were performed using the GlobalView NOAA product and the NOAA weekly522

aircraft samples as the basis of the bias correction scheme to the optimized global523

CarbonTracker CO2 product and significantly improved the accuracy of the inversion524

results. This demonstrates the importance of maintaining well calibrated global CO2525

networks and in particular aircraft profile programs with respect to estimating regional526

carbon budgets with CO2 data.527

Posterior variance estimates of CO2 exchange continue to be one of the most528

di�cult estimates to make for inversion modelers. Variance estimates from these529

CO2 inversion systems are sensitive to both inversion method and a priori covariance530

specifications. For example, posterior covariance from EnKF methods such as used for531

CarbonTracker are strongly dependent upon the particular EnKF algorithm [Tippett532

et al., 2003]. Shortages of ancillary information on NEE, such as spatially dense eddy533

covariance observations or temporally and spatially rich biomass accumulation statistics534

often necessitate “broad” a priori covariance structures be used in inversion systems.535

While inversion modelers can attempt to control for portions of this uncertainty, i.e.536

model methodology, other portions such as ancillary data to constrain the fluxes a priori537

are generally outside of their control. Nevertheless, results from this paper showed that538

quite good agreement can result from two inversions (CSU and PSU) where significantly539

di↵erence a priori flux uncertainties, as well as system and method, were used.540
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In summary, we have brought together three di↵erent inversion techniques, driven541

by di↵erent meteorology and somewhat di↵erent a priori assumptions, available at three542

commonly employed scales (global, continental and regional). Regional flux estimates543

from each of the three frameworks agreed well with the estimates provided by the544

inventory data. We consider this a first step towards ascertaining feasibility of the CO2545

inversion method to produce regional carbon flux estimates as would be done under546

a monitoring program. Moreover, this study shows that atmospheric inversions are547

capable of capturing regional CO2 flux estimates at sub-national scales, scales which548

will be useful for future carbon-cycle research and regional greenhouse gas initiatives.549

The most critical next steps are to further refine the inversion frameworks to better550

quantify boundary inflow uncertainty, sensitivity to a prior flux estimates, and provide551

explicit characterizations of transport variability as well as leverage the most recent and552

comprehensive sources of data on CO2.553
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Figure Captions793

Figure 1. Map of MCI domain.
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Figure 2. Flowchart of atmospheric inversion process.
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Figure 3. Annual NEE estimate by the inventory components. Mean estimates are

shown in left panel and standard deviations are shown on right side. Note that the

distribution of the inventory is not necessarily Gaussian and therefore, in a rigorous

sense, the standard deviation is simply a measure of uncertainty.
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Figure 4. Densities for annual NEE for inversion results and inventory (2007). Top

panel shows results for entire MCI region while bottom panel shows results for the inter-

section of the PSU inversion model domain and MCI domain. PSU inversion is based on

SiB3-CROP o✏ine prior. CSU inversion is also based on SiB3-CROP o✏ine prior with

GV-bias corrected CT inflow. These results include explicit variability estimates that

were constructed for the inventory using a Monte Carlo anlysis and variability estimates

that arise naturally from the matrix-based atmospheric inversion procedure. Due to di�-

culty in obtaining covariances for the CarbonTracker ecoregion estimates, only marginal

ecoregion specific variances were used in the figure for NEE. The variability induced

by varying inflow CO2 or underlying transport model characteristics is not implicitly

included here but can be seen in Table 2.
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Figure 5. Each panel name is composed of (1) inversion model, (2) 2007 for annual total

or JJA2007 for June/July/August sum, and (3) “pr” for a priori and “post” for posterior

flux. A priori annual 2007 NEE estimates are shown in middle row with posterior annual

2007 NEE estimates shown in the bottom row. PSU inversion is based on SiB3-CROP

o✏ine prior with residual 109 TgC harvest sink. CSU inversion is also based on same

prior (and underlying seasonality) but with residual harvest sink balanced by respiration

annually to induce net zero NEE and uses GlobalView bias-corrected CT inflow. The

top row shows the June/July/August total NEE for each prior flux which is indicative

of the spatial signal of strong summer crop carbon drawdown.
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Figure 6. Plots of inventory estimates vs inversion for annual 2007 NEE. Each pixel of

Figure 5 is represented as a datum in the figure. PSU inversion is based on SiB3-CROP

o✏ine prior. CSU inversion is also based on SiB3-CROP o✏ine prior with GV-bias

corrected CT inflow
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Figure 7. Time series of net ecosystem exchange (NEE) estimates from a variety of

inversion models for 2007. PSU inversion is based on SiB3-CROP o✏ine prior. CSU

inversion is also based on SiB3-CROP o✏ine prior with GlobalView-bias corrected CT

inflow. Results from PSU inversion are from the intersection of PSU inversion domain

and MCI domain while the results for the CarbonTracker and CSU inversions are on the

MCI domain.
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Figure 8. Sensitivity of daytime observations of passive surface flux to daytime passive

flux releases. Left panel shows results for PSU transport with WRF and LPDM and

right panel shows results for CSU transport with RAMS and LPDM.
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Figure 9. Sensitivity of daytime observations of passive surface flux to nighttime passive

flux releases. Left panel shows results for PSU transport with WRF and LPDM and right

panel shows results for CSU transport with RAMS and LPDM.



Atmos. Chem. Phys., 12, 337–354, 2012
www.atmos-chem-phys.net/12/337/2012/
doi:10.5194/acp-12-337-2012
© Author(s) 2012. CC Attribution 3.0 License.

Atmospheric

Chemistry

and Physics

Constraining the CO2 budget of the corn belt: exploring
uncertainties from the assumptions in a mesoscale inverse system
T. Lauvaux1, A. E. Schuh2,5, M. Uliasz5, S. Richardson1, N. Miles1, A. E. Andrews4, C. Sweeney4, L. I. Diaz1,
D. Martins1, P. B. Shepson3, and K. J. Davis1
1Department of Meteorology, The Pennsylvania State University, Inversity Park, Pennsylvania, USA
2NREL, Fort Collins, Colorado, USA
3Purdue University, W. Lafayette, Indiana, USA
4National Oceanic and Atmospheric Association, ESRL/GMD, Boulder, Colorado, USA
5Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA

Correspondence to: T. Lauvaux (lauvaux@meteo.psu.edu)

Received: 27 June 2011 – Published in Atmos. Chem. Phys. Discuss.: 22 July 2011
Revised: 8 November 2011 – Accepted: 13 December 2011 – Published: 5 January 2012

Abstract. We performed an atmospheric inversion of the
CO2 fluxes over Iowa and the surrounding states, from
June to December 2007, at 20 km resolution and weekly
timescale. Eight concentration towers were used to constrain
the carbon balance in a 1000⇥1000 km2 domain in this agri-
cultural region of the US upper midwest. The CO2 concen-
trations of the boundaries derived from CarbonTracker were
adjusted to match direct observations from aircraft profiles
around the domain. The regional carbon balance ends up
with a sink of 183 TgC±35 TgC over the area for the period
June–December, 2007. Potential bias from incorrect bound-
ary conditions of about 0.55 ppm over the 7 months was cor-
rected using mixing ratios from four different aircraft profile
sites operated at a weekly time scale, acting as an additional
source of uncertainty of 24 TgC. We used two different prior
flux estimates, the SiBCrop model and the inverse flux prod-
uct from the CarbonTracker system. We show that inverse
flux estimates using both priors converge to similar posterior
estimates (20 TgC difference), in our reference inversion, but
some spatial structures from the prior fluxes remain in the
posterior fluxes, revealing the importance of the prior flux
resolution and distribution despite the large amount of atmo-
spheric data available. The retrieved fluxes were compared
to eddy flux towers in the corn and grassland areas, revealing
an improvement in the seasonal cycles between the two com-
pared to the prior fluxes, despite large absolute differences
due to representation errors. The uncertainty of 34 TgC (or

34 gCm2) was derived from the posterior uncertainty ob-
tained with our reference inversion of about 25 to 30 TgC
and from sensitivity tests of the assumptions made in the in-
verse system, for a mean carbon balance over the region of
�183 TgC, slightly weaker than the reference. Because of
the potential large bias (⇠24 TgC in this case) due to choice
of background conditions, proportional to the surface but not
to the regional flux, this methodology seems limited to re-
gions with a large signal (sink or source), unless additional
observations can be used to constrain the boundary inflow.

1 Introduction

Atmospheric inversions have been used to quantify the ex-
changes of CO2 between the atmosphere and the continents,
and the atmosphere and the oceans, each of them contribut-
ing to a significant part of the global carbon cycle (Tans et al.,
1990; Francey et al., 1995; Bousquet et al., 2000; Chevallier
et al., 2010). Uncertainties and variability amongst studies
remain large (Gurney et al., 2002), especially for the conti-
nental surface exchanges that are highly variable in time and
space and closely related to land use change, climate vari-
ability and ecosystem responses to environmental changes
(Canadell et al., 2007). The misrepresentation of atmo-
spheric processes in the transport models (Baker et al., 2007;
Stephens et al., 2007), the lack of available measurements
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around the globe responsible for the ill-conditionning of the
problem at large scales (Enting, 2002), and the errors of
representation at the scales they have been performed (Geels
et al., 2007), limit the potential of the method.
Several studies attempted to reduce these major sources

of uncertainties by improving temporal and spatial resolu-
tions, from global to continental scales solving for homoge-
neous flux areas called ecoregions (Peters et al., 2007; But-
ler et al., 2010), or pixel-based fluxes (Carouge et al., 2010;
Gourdji et al., 2010; Schuh et al., 2010), and from continental
to regional domains (Lauvaux et al., 2009a; Göckede et al.,
2010a).
Refinement of the resolution requires the deployement of

high density measurement networks in order to solve for the
increasing number of unknowns in the state vector. Past cam-
paigns were limited to a few surface tower sites or flights
for a short period of time as CERES (CarboEurope Regional
Experiment Strategy) (Dolman et al., 2006) or for very lim-
ited areas as in the bay of Valencia, (i.e. during the RECAB
campaign, Pérez-Landa et al., 2007). Second, the bounded
simulation domain becomes an important limitation if not
well-informed of the CO2 inflow and requires the accurate
knowledge of concentrations representing the far field influ-
ence (Rödenbeck et al., 2009). The boundaries require then
additional observation datasets to inform the system about
potential biases due to incorrect carbon mass in the air flow.
Third, as inverse methods rely on a sufficiently good prior
flux estimate, the performances of terrestrial ecology models
need to be enhanced by finer vegetation description, espe-
cially its phenology, and a good description of the diurnal
variability (Corbin et al., 2008; Gourdji et al., 2010). Finally,
the mesoscale atmospheric transport models, even if better
able to simulate the atmospheric dynamics driving hourly
concentrations compared to general circulation models (Ah-
madov et al., 2007), are still affected by transport errors from
parametrizations of the Planetary Boundary Layer dynamics
in particular (Gerbig et al., 2005; Sarrat et al., 2007a).
More recent studies have shown the potential of the at-

mospheric inversion methodology at the mesoscale (Lauvaux
et al., 2009a). The evaluation of the inverse fluxes was lim-
ited to 18 days at 8km resolution, but this study demonstrated
for the first time the improvement of the fluxes in time and
space against direct flux measurements from aircraft (Gioli
et al., 2004). Over longer timescales, relatively small biases
at short time scales become increasingly important leading
to large final uncertainties at the annual time scale (Schuh
et al., 2010). Even if the use of high temporal frequency
data increases the amount of information in the system (Law
et al., 2003), the flow-dependence of the error structures in
the observation space increases with data density too, shown
through model error propagation (Lauvaux et al., 2009b) or
variograms of model-data mismatch (Gerbig et al., 2003b).
Finally, flux errors from ecosystem models used to generate
prior fluxes can be correlated, but studies at different time
scales and using different models revealed a variety of spatial

error correlation structures from large (Peylin et al., 2005) to
very small (Chevallier et al., 2006) length scales.
In this study, we developed a mesoscale inversion at 20 km

resolution generating inverse fluxes from June (start of the
measurement campaign) to December 2007, at a weekly time
scale (7.5 days), over the Mid Continent Intensive (MCI) do-
main, including Iowa and the surrounding states, known as
the “Corn Belt” area. This unique instrumental deployement
of concentration towers (Miles et al., 2010) and the presence
of the National Oceanic and Atmospheric Administration
(NOAA) aircraft profile sites (Sweeney et al. (2011), http://
www.esrl.noaa.gov/gmd/ccgg/aircraft/index.html) enable the
most data-constrained regional inversion. The abundance of
crops in the area (corn, soybean, wheat) includes C4 and C3
vegetation types, with a contribution of 20 to 40% by C4
crops on the growing season gross photosynthetic CO2 ex-
change (Griffis et al., 2010). The apparent atmospheric sink,
due to the prevention of the decomposition of crop material
after harvest, is one of the largest contributions to the overall
US carbon budget annually (West et al., 2011), even though
this carbon is released by livestock and humans elsewhere in
the country during the following year. The strength of the
atmospheric signals and the observation network are optimal
conditions to test the potential of an atmospheric inversion at
the regional scale.
We first describe the system and the different models used

to generate the transport fields used to link concentrations to
fluxes and their related uncertainties (cf. Sect. 2). Then we
estimate the inverse fluxes using two different prior fluxes
over the area, one being the direct results of the vegetation
model SiBcrop (Lokupitiya et al., 2009) and second the prod-
uct from the CarbonTracker inverse system (Peters et al.,
2007), that we compared to several eddy flux sites over corn
and grass ecosystems (cf. Sect. 3). We ran several sensitivity
tests and demonstrate the importance of the different compo-
nents of the system, especially the assumptions made in the
error covariance matrices, the potential errors due to bound-
ary conditions, and tested the potential of the system in a
more general case. Finally, the remaining uncertainties and
the potential of the inverse system are discussed in Sect. 4.

2 The inverse system

2.1 Analytical inversion framework

The inverse system used in this study is an analytical inver-
sion framework (Tarantola, 2004) correcting for temporally
averaged fluxes over 7.5 day periods, separated into the av-
eraged daytime (6 a.m. to 6 p.m.) and nighttime (7 p.m. to
5 a.m.) components at 20 km resolution, and boundary mix-
ing ratios. We solved the inverse problem using the classical
matrix solution by minimizing the cost function F defined as
follows:

F = 1
2
[(x �x0)

T B�1(x �x0)+(Hx �y)T R�1(Hx �y)] (1)
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where x are the unknown flux vector we invert for, x0 the a
priori flux estimate, y the observations,H the influence func-
tions, and R and B the uncertainty covariance matrices of the
observations and the fluxes respectively. The control vector
x includes the surface fluxes and the pre-processed bound-
ary mixing ratios, and the influence functionH describes the
relationship between the observed mixing ratios, the surface
fluxes, and the pre-processed boundary mixing ratios. Mini-
mizing the equation with respect to x yields:

x = x0+BHT (HBHT +R)�1(y �Hx0) (2)

We can define the posterior error covariance A for sources
given by the following expression:

A�1= B�1+HT R�1H (3)

For the boundaries, we defined two different time frequen-
cies that are applied to the different boundary condition time
series for each tower: hourly, and every 90 h, as explained in
Sect. 2.5.3. In our inversion, the contributions of the bound-
ary conditions to the modeled concentrations (referred as
boundary conditions) are defined for each tower separately
and only vary in time (i.e. no spatial description of the inflow
in the inversion). The initial boundary condition is computed
in the direct simulation and corresponds to the influence of
the boundaries at the observation location. The spatial com-
ponent is also considered during the pre-processing using
the aircraft data and the influence functions (one for each
boundary) to correct for biases. In the inversion, we adjust
the overall inflow for each tower and at each time step using
the surface tower mixing ratios but no explicit adjoint model.
The final state vector dimension, on a grid of 980⇥980 km
at 20 km resolution (49 grid points in each direction) and
for two components (nighttime and daytime), ranges from
49⇥49⇥2+2⇥8= 4818 (90 hour frequency at the bound-
aries, or 2 unknowns per observation sites over 180 h) to
49⇥49⇥2+180⇥8= 6242 (hourly frequency at the bound-
aries, or 180 unknowns per tower). The observations are at
the hourly frequency (180⇥8= 1440 observations per 7.5
days). One of our inversion setups includes observation er-
ror correlations depending on the time of the day, but not our
reference setup. The transport error correlations were defined
at similar scales but not for the transport model used in this
study. As a conservative choice, error correlations were used
only in the sensitivity experiments (cf. Sect. 3.6). The sys-
tem is more constrained than past studies thanks to the large
amount of data over the domain (1440 atmospheric observa-
tions versus 4818 to 6242 unknowns). Inverse fluxes over
7.5 day periods are decorrelated from one period to the next,
considering the low temporal correlations in daily averaged
flux errors over few days (Chevallier et al., 2006).

2.2 Mixing ratio towers over the MCI

We used hourly CO2 mixing ratios from seven towers all lo-
cated in the Mid Continent Intensive Experiment area (Miles

Fig. 1. The Mid Continent Intensive domain with the dominant plant functional types and the
observation locations including the concentration tower sites used in the inversion (Ring2 and
NOAA towers), the boundary conditions (NOAA aircraft profiles), and the eddy-flux sites used
to evaluate the posterior fluxes
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Fig. 1. The Mid Continent Intensive domain with the dominant
plant functional types and the observation locations including the
concentration tower sites used in the inversion (Ring2 and NOAA
towers), the boundary conditions (NOAA aircraft profiles), and the
eddy-flux sites used to evaluate the posterior fluxes.

et al., 2010), part of the North American Carbon Program
(Ogle et al., 2006) (cf. Fig. 1). Five of them were deployed
from 2007 to 2009 as additional sites for inversion purposes,
on ⇠100m high towers, located in and out of the corn belt
area: Centerville, Mead, Round Lake, Galesville, and Ke-
wanee (Fig. 1). These five sites were equiped with cavity
ring-down analyzers (Crosson, 2008), calibrated daily, and
related measurement errors are 0.2–0.3 ppm for the hourly
averages (Richardson et al., 2011). One Ameriflux site, Mis-
souri Ozarks (Gu et al., 2006), on a 40m tower was calibrated
during the period to provide an additional observation site
during our study period. Finally, two NOAA tall tower sites
were also available in the area: Park Falls (LEF), and West
Branch (WBI). We used 100m sampling heights from all the
sites to remain consistent. Compared to previous regional
campaigns, the large number of observation sites offers the
unique opportunity to constrain the regional carbon balance
and assess the full potential of such methodology. Mixing
ratio data were recorded every two minutes, and averaged to
hourly resolution for this study.

2.3 The prior fluxes and their associated errors

Two prior flux estimates are used in this study: the first
is the direct simulation of CO2 Net Ecosystem Exchange
(NEE) with the SiBcrop vegetation model (Lokupitiya et al.,
2009), and the second is the optimized flux estimate from the
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CarbonTracker inverse system (Peters et al., 2007). The CO2
fluxes of the first prior were simulated using the Simple Bio-
sphere model including the recent developments of crop phe-
nology and physiology (SiBcrop) at 10 km resolution and at
hourly time step, forced by the NARRmeteorological renaly-
sis product (North American Regional Reanalysis). This ver-
sion of SiB (Lokupitiya et al., 2009) includes a parametriza-
tion of the Leaf Area Index (LAI) and the fraction of Photo-
synthetically Active Radiation (fPAR) for crops that showed
better agreement in comparison to eddy flux sites than pre-
vious NDVI-derived phenology. The allocation of carbon to
the different pools (leaves, roots, stems, flowers,...) is esti-
mated on a daily basis, the leaf pool being used to estimate
the LAI, and the crop harvest takes place after maturity of
the plants. In each pixel, three fluxes corresponding to the
three dominant vegetation types are computed. The total flux
corresponds to the sum of the three fluxes weighed by their
relative vegetation fraction. The second prior fluxes used in
this study are the inverse flux estimates from CarbonTracker
2009 system (CTv09) for the year 2007, computed at a 1� by
1� resolution, and a 3 hourly time step over North America
(Peters et al., 2007). The CarbonTracker inverse system uses
atmospheric mixing ratios from the NOAA global network of
surface stations to optimize surface fluxes over large ecore-
gions. Compared to the present inversion system, the spatial
patterns in the inverse fluxes are prescribed for these ecore-
gions to compensate for the lack of observational constraint.
The initial fluxes used in the CarbonTracker inverse system
comes from the Carnegie-Ames Stanford Approach (CASA)
biogeochemical model1, which lacks a description of applied
phenology that is specific to crops. A linear interpolation
was applied to generate hourly fluxes. Most of the towers
used in our inversion are not currently used in CTv09, only
WBI and LEF. These two prior fluxes were used to investi-
gate the importance of the spatial and temporal distribution
of the prior fluxes on the final retrieved estimates. We also
assess the degree to which the regional cumulative flux will
converge given very different priors (Sibcrop with a June-
December balance of 109 TgC sink, and CTv09 final product
with 198 TgC sink) over the region. We also investigated the
robustness of the system by adding substantial biases in the
prior fluxes in summer and winter (cf. Sect. 4).
We quantified prior flux uncertainties based on the weekly

flux model-data mismatch at several locations within the do-
main (cf. Sect. 2.6). We first defined the standard devia-
tions as the maximum difference observed during the year
between the weekly averaged modelled and observed NEE
for the three most represented vegetation types of the region
(corn, soybean, and grassland). This maximum model-data
mismatch is then normalized for every week following the
seasonal variability of the absolute fluxes (from 1 to 0.2), to
define a weekly standard deviation. The combination of the
observed seasonal cycle and the maximum model-data mis-

1http://geo.arc.nasa.gov/sge/casa/

match limits representation errors between site-level obser-
vations and grid point modeled fluxes. The final standard
deviations represent 30 to 50% of the weekly net fluxes,
and 40 to 70% of the total mismatch once projected in the
observation space. The uncertainty assessment was finally
controlled by computing the reduced �2 value. Depend-
ing on the plant functional type (PFT), the maximum val-
ues for the standard deviations range in the growing season
from 5µmolm�2 s�1 for grassland to 10 µmolm�2 s�1 for
corn, and 1 to 5 µmolm�2 s�1 during fall and winter. Er-
ror flux correlations are based on the vegetation cover map
combined with an averaged correlation length. We defined
the ecosystem spatial error correlation as the minimum of
the vegetation fraction for one given ecosystem in the two
pixels (following the SiBcrop ecosystem classification, from
Lokupitiya et al., 2009), usually from 0.4 to 0.8, as follows:

Ceco1m,n =min(f eco1m ,f eco1n ) (4)

with C
eco1
m,n the correlation coefficient between the pixel m

and the pixel n for the ecosystem type eco1, and f eco1 the
fraction of vegetation for eco1 in one given pixel. We consid-
ered only the three major ecosystem types of each pixel. For
example, two pixels including respectively 25% and 60% of
corn will end up with .25 correlation coefficient. We com-
bined this ecosystem-based error correlation with a distance-
based error correlation (exponentially decaying correlation
in space with a correlation length L) to create the final prior
error correlation tensor as in Lauvaux et al. (2009b) by:

C

0 = (C
1/2
ecoC

1/2
dist )(C

1/2
ecoC

1/2
dist )

T (5)

with the associated correlation tensors, Ceco for the ecosys-
tem component and Cdist for the distance component, and
C

0 the correlation matrix in the control variable space. The
definition of the correlation length L in Cdist, based on previ-
ous studies, is highly uncertain. For example, at the monthly
timescale, Chevallier et al. (2006) showed no significant spa-
tial correlations in the model-data mismatch. Other studies
have used large error correlation lengths (Peylin et al., 2005;
Schuh et al., 2010), with an isotropic distance-based distri-
bution (Carouge et al., 2010). In the current inverse sys-
tem, several tests showed that correlation lengths of more
than 50 km showed very similar results in terms of inverse
fluxes, primarily due to the large observational constraint on
the fluxes. Past studies estimated clear spatial structures for
crops at short distances (100 km) (Lauvaux et al., 2009a).
We decide here to use L = 300 km as correlation length, de-
creased by the combination of ecosystem-based correlations.
As a comparison, the overall uncertainty on the prior is sim-
ilar to L = 100 km without considering the ecosystem influ-
ence. The choice of the error correlation length does impact
the posterior uncertainties and further investigations will be
performed in forthcoming studies. The prior error variances
were finally slightly modified to adjust the ratio between the
observational constraint and the prior errors. We used the
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reduced �2 value to adjust the flux error variances (Kamin-
ski et al., 2001). However, the adjustment of the flux errors
remains lower than 10% compared to the initial estimates.

2.4 Influence functions and atmospheric transport
model errors

2.4.1 Atmospheric transport model WRF-CHEM

The atmospheric transport model used in this study is the
Weather Research Forecast model (Skamarock et al., 2005),
including the chemistry module slightly modified here for
CO2 (referred to as WRF-ChemCO2). The simulation do-
main is centered on Iowa, covering 1000 km by 1000 km
at a 10 km resolution (Fig. 1). The atmospheric boundary
layer scheme used is the Mellor-Yamada-Nakanishi-Niino
(MYNN) 2.5 scheme (Nakanishi and Niino, 2004) coupled
to the Monin-Obukhov (Jancic Eta) scheme for the surface
physics. The atmospheric vertical column was described by
60 levels, with 40 levels in the lower 2 km, the first level
being at about 20m above ground. The NOAH land surface
model (Chen and Dudhia, 2001) was used to simulate the sur-
face energy balance, and the National Centers for Environ-
mental Prediction (NCEP) Eta/NAM model analysis product
at 40 km resolution was used for the initial and boundary me-
teorological and surface conditions.

2.4.2 Lagrangian particle dispersion modeling

The influence functions, representing the relationship be-
tween concentrations at the tower locations and their related
flux footprints at the surface, were simulated with the La-
grangian Particle Dispersion Model from Uliasz (1994). The
mean winds (u,v,w), potential temperature, and turbulent ki-
netic energy from the WRF-Chem CO2 simulations are used
as input variables each 30min to drive the particle motions
from the receptor locations (receptor oriented framework),
as described in Lauvaux et al. (2008). 1800 particles are re-
leased incrementally at equal intervals over one hour periods
to describe the influence functions for every hourly observa-
tions. We also ran an additional Lagrangian simulation with
a limited number of particles (180 per hour) to describe the
boundary influence. In this study, we used the boundary in-
fluence functions to relate every observations with one of the
four cardinal directions, in and above the planetary bound-
ary layer (PBL). The method is described in Sect. 2.5. The
final resolution of the inversion was degraded to 20 km at the
surface for computational efficiency of the system, which re-
mains adequate considering the spatial dimensions of the flux
patterns in the area.

2.4.3 The MCI 2007 aircraft campaign

For the quantification of vertical transport errors, we used
aircraft observations, mainly vertical profiles of CO2 concen-
trations, that were measured using a twin-engine Beechcraft

Duchess (Garman et al., 2006) during summer 2007 over
Iowa (Martins et al., 2009). The vertical profiles ranged
from the surface to the lower free troposphere (⇠3 km a.g.l.)
with an approximate ascent/descent rate of 2.5m s�1. A non-
dispersive infrared differential absorption spectrophotometer
was used to detect dry mole fractions of CO2 every second,
with an uncertainty of the measurements of ±0.3 ppm (Mar-
tins et al., 2009). In-flight calibrations were conducted every
3min using a reference gas standard (386.12 ppm) prepared
at the NOAA Earth Systems Research Laboratory and trace-
able to the World Meteorological Organization Central Cal-
ibration Laboratory for CO2 (Zhao et al., 1997). Between
15 June to 25 June 2007, nine flights were performed in cen-
tral Iowa, which corresponds to one to three flights every two
days on average. Six flights including long transects and ver-
tical profiles were used in this study to evaluate the atmo-
spheric model performances.

2.4.4 Atmospheric transport model errors

We estimated the transport model errors in four different
steps: (1) we evaluated the WRF modeling performance by
comparing the simulated concentrations to observations from
nine aircraft transects between June 17 and 25 June 2007
(with six flights presented here); (2) we avoided inconsis-
tencies in the Lagrangian model simulation by removing ob-
servations showing large differences between the direct CO2
concentrations fromWRF-ChemCO2 and the backward con-
centrations from the LPDM; (3) we computed the aggrega-
tion errors and adjoint model errors using the standard devi-
ation of the difference between the direct WRF mixing ratios
and the backward LPDM mixing ratios over each week; and
(4) we defined for one setup of our sensitivity experiment the
error correlations in the observation error covariance matrix
from previous studies based on ensemble simulations (Lau-
vaux et al., 2009b).
We describe here the four steps in more detail. First, we

evaluated the simulated PBL heights by comparing the CO2
vertical distributions to observed CO2 concentations from
nine aircraft flights that occured between the 17 to 25 June
2007 (Martins et al., 2009). The aircraft campaign consisted
of several transects located in central Iowa and encompassed
variable altitudes, ranging from a few hundreds of meters
above ground level (in the convective PBL) to a few thousand
(in the free troposphere). We present results for six flights
of the campaign with long transects and repeated vertical
profiles. The PBL height errors are diagnosed from these
flights for transition periods (morning to early afternoon) and
well-mixed conditions (midday to late afternoon), and con-
verted into mixing ratio uncertainties. Results are presented
in Sect. 3.
Second, we compared the CO2 concentrations from the

direct simulation (WRF-ChemCO2) to the backward gener-
ated concentrations from LPDM for the 8 towers over the 7
months. Both simulations are coupled to the Sibcrop fluxes at
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10 km resolution. When the difference is larger than 2� , the
standard deviation in the observation error covariance matrix
is increased such that the concentration is ignored.
Third, we estimated the potential biases between the two

simulated concentrations. The standard deviation is added to
the initial one (from the previous step). This part includes the
errors in the adjoint and due to aggregation of the fluxes from
10 km to 20 km. The results and the impacts are presented in
Sect. 3.
Finally, we compared two estimates of temporal error cor-

relations in the observation error covariance matrix. Because
of the continuous flow of the atmosphere, errors affecting
hourly observations are propagated through time and space.
Lauvaux et al. (2009b) showed that spatial correlations are
significant below a distance of 150 km between observation
locations when using hourly observations, corresponding to
a correlation length of 30 to 40 km. Similarly, Gerbig et al.
(2003a) found an exponentially decreasing correlation length
of about 40 km from variograms of aircraft measurements.
So we have not included any spatial correlation in the ob-
servation errors in regard of distances between towers in the
present network (>150 km). But hourly observation errors
are affected by temporal correlations. We used a descrip-
tion of the temporal error correlations for each hour of the
day based on a previous ensemble of perturbed model sim-
ulations (Lauvaux et al., 2009b). For each hourly observa-
tion time step, the correlation coefficients with the following
hours are prescribed. These correlation functions correspond
to the propagation of errors from any hour of the day to the
following hours. For example, large correlation coefficients
relate one hour in the afternoon to the next ones (up to 0.6
for the first following hours) to lower values during the night
(less than 0.4 for the first following hours). Lauvaux et al.
(2009b) showed the conservation of the transport model er-
ror structures during the afternoons, whereas transitions to
different stability conditions (mornings and late afternoons)
tend to dissipate these structures. In our case, the error corre-
lation functions are defined over 12 h (linking for example er-
rors at 2 p.m. with the 12 following hours), or less if the cor-
relation coefficient becomes negative (e.g., 8 p.m. error cor-
relation function equals zero at 10 p.m.), meaning that the er-
ror structures disappear rapidly when the stability conditions
are changing. Here, we defined our reference case with no
temporal correlation because the correlation functions were
computed with a different mesoscale model (MesoNH in this
case), and over a different region. Though, we compare the
impact of these error correlations in Sect. 3.6 to our refer-
ence inversion that assumes no temporal correlation to quan-
tify their relative importance compared to other components
of the system.

2.5 Boundary conditions and aircraft observations

The modeled CO2 mixing ratios can be decomposed in two
seperate contributions: the local surface fluxes within the

modeling domain, and the boundary conditions correspond-
ing to the far field influence, i.e. the contribution of the CO2
inflow from the outer domain to the observed concentrations.
We describe in this section the aircraft measurements used
to correct initial model outputs, the pre-processing of the
boundary mixing ratios to reduce the potential biases, and
finally the estimation of their associated uncertainties. This
pre-processing of the boundary conditions using aircraft flask
data is done independently, before the inversion. The fi-
nal corrected boundary conditions will be used as prior in-
flow in the flux inversion. Previous studies at the regional
scale showed limited impact from the boundaries because of
the oceanic influence and the orography, forcing the scale of
the atmospheric processes to mesoscale circulation patterns.
These campaigns were in summer, over short time periods (a
few weeks), with little changes in the far-field influence com-
pared to large local vegetation signals (Pérez-Landa et al.,
2007; Sarrat et al., 2007b). Over longer time scales, sys-
tematic errors become increasingly important and need to be
corrected (Göckede et al., 2010b).

2.5.1 Weekly aircraft data from NOAA

In this study, the flat terrain and the absence of orography
around our domain allow large circulation patterns to af-
fect the background air concentration through seasonal cir-
culation patterns, longitudinal continental jets, and latitu-
dinal conveyor systems as fronts pass (Wang et al., 2007).
Here, aircraft data, and more specifically vertical profiles,
were used to correct for biases and misrepresentation of the
inflow. We used weekly flights operated by the Carbon
Cycle Greenhouse Gases Aircraft Project (Sweeney et al.,
2011) run by the NOAA’s Earth System Research Labora-
tory (NOAA/ESRL). Four sites were selected to represent
our four simulation boundaries: the Airborne Aerosol Ob-
serving near Bondville, Illinois (AAO), Beaver crossing in
Nebraska (BNE), Homer in Illinois (HIL), and Park Falls in
Wisconsin (LEF) (cf. Fig. 1). We compare flask data to mod-
elled mixing ratios at the boundaries, for each week of the
7 months, and compute a correction which we apply to the
inflow boundaries to remove or at least decrease biases by
pre-processing of the boundary concentrations.

2.5.2 Pre-processing of the boundary CO2
concentrations

The boundary conditions are defined in two steps: first, we
compute time series at each tower location. Second, these
time series are used in the inversion system. But before
adding these time series to the state vector in the inversion,
we removed systematic errors with the help of aircraft mea-
surements, and computed their associated uncertainties. The
pre-processing of the boundaries helps to limit potential bi-
ases affecting boundary conditions.
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Four aircraft profile sites were selected to correct for po-
tential biases in the CTv09 mixing ratios. We attributed each
of the four aircraft profile sites to one or two of the four car-
dinal boundaries. The choice of four cardinal boundaries is
due to the lack of extensive datasets in space. We limit our
correction here to the mean wind direction represented by
the four boundaries of our domain. Two of the sites (AAO
and HIL, cf. Fig. 1) located in the South East of the domain
were both used to assess the South and East boundary cor-
rections, LEF for the North boundary, and BNE for the West.
The framework is presented in Fig. 2. First, we compared
the aircraft profile mixing ratios to the modeled CTv09 mole
fractions integrated over two layers: one PBL contribution
and one free tropospheric contribution. The PBL height is
determined with the LPDM particle distribution over the col-
umn, defined by higher densities of particles within the PBL,
directly related to the TKE profile from WRF. Second, we
computed the model-data mismatches (North, South, East,
West, with one PBL and one free tropospheric values) at the
exact time of the flights, and averaged them if several flights
were performed during the week. These weekly model-data
mismatches represent the systematic errors, and are used to
correct the initial boundary conditions from CTv09. Finally,
we have to apply the corrections at the boundaries on the time
series computed at the tower locations. At each time step, a
correction is applied on the value of the time series depend-
ing on the origin of the inflow. Over a week, hourly ober-
vations are influenced by one or more boundaries (following
the main wind direction changes). We identified the inflow
origin with the particle distribution at the boundaries of the
domain. The particles are counted over each week on the
two levels and for each boundary. The selected mismatches
were then removed from the initial CTv09 inflow time series
depending on the boundaries influencing the tower mixing
ratios. These corrected values were then included in the in-
version system as additional unknowns, described hereafter
(cf. Sect. 2.5.3). The results are presented in Sect. 3.3.

2.5.3 Optimization of the boundary CO2 concentrations
in the inversion system

The processed boundary conditions are now treated as ad-
ditional unknowns in the inverse system, decreasing slightly
the observational constraint by increasing the number of el-
ements in the state vector (representing both the fluxes and
the boundaries). In the system, we attribute part of the atmo-
spheric signals to the boundaries following the uncertainties,
i.e. no transport model is used to attribute atmospheric sig-
nals to the inflow at this step. A transport model was used
previously to estimate systematic errors and relate the obser-
vations with the boundaries. Here, we only consider the in-
flow as an uncertainty instead of trying to optimize it without
the help of additional observations.
The temporal window for the correction of the bound-

ary conditions corresponds to the temporal variability of the

  

Boundary condition time series
at the site locations 
(WRF simulation using CTv09)

NOAA aircraft profiles
(4 sites, flasks)

CTv09 mixing ratios
at the boundaries

Attribution of the corrections
using LPDM particle distribution

Corrected tine series of
Ctv09 mixing ratios at the 
site locations

Boundary time series
uncertainties
(model-data mismatch)

CO2 mismatch at the
boundaries (corrections)

Atmospheric inversion

Fig. 2. Schematic framework of the boundary conditions including the mixing ratio pre-
processing and the estimation of the uncertainties
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Fig. 2. Schematic framework of the boundary conditions including
the mixing ratio pre-processing and the estimation of the uncertain-
ties.

CO2 inflow. We chose two different temporal windows to
invert for the boundaries at each tower: one hour, and 90
hours. The dimensions increase with 2⇥8= 16 additional
unknowns when using 90-h averaged boundary mixing ratios
or 180⇥8= 1440 additional unknowns with hourly bound-
ary mixing ratios. Hourly changes correspond to large gradi-
ents, whereas several days represent only synoptic changes.
Theoretically, longer time windows imply longer temporal
correlations in the boundary conditions. The implicit defini-
tion of the correlations in the state vector errors implies more
than the physical duration of events but also the capacity of
the system to invert for biased concentrations. 90 h (about
four days) corresponds to the length of synoptic events af-
fecting the inflow concentrations. In our study, we estimated
the boundary condition uncertainties based on the standard
deviations of the model-aircraft data mismatch, ranging from
2 to 4 ppm at the hourly time step, and from 0.5 to 1 ppm on
90 h-averages.
Depending on the time of the day, the combination of the

performance of the mesoscale model, the reproductability of
the concentrations by the Lagrangian model, and the bound-
ary condition uncertainties, the inverse system will distribute
the atmospheric signals amongst the different components
(nighttime and daytime surface fluxes, and boundary concen-
trations). We discuss in Sect. 4 the impact of these compo-
nents and their related uncertainties associated on our final
CO2 balance.

2.6 Evaluation of the inverse fluxes: Eddy-flux sites
over the MCI

We used observed Net Ecosystem Exchange (NEE) measure-
ments from six different eddy-covariance flux sites to evalu-
ate the temporal patterns of the inverse analysis. Four are
located in the corn area: Bondville (Meyers and Hollinger,
2004), Rosemount 21 and 19 (Baker and Griffis, 2004), and

www.atmos-chem-phys.net/12/337/2012/ Atmos. Chem. Phys., 12, 337–354, 2012



344 T. Lauvaux et al.: Corn Belt inversion

Fig. 3. CO2 concentrations observed during several flights of the ALAR campaign for June
15, 17 and 19 (on the left) compared to WRF-ChemCO2 concentrations using SiBcrop fluxes
(=before flux optimization) (on the right). Colors indicate the mixing ratio range in ppm. The
top of the PBL is indicated by the large vertical gradients from low to high mixing ratios in the
free troposphere (green dashed line). The differences between observed and simulated PBL
heights are large during transition periods (mornings), overwhelming signals during nighttime,
but are low during daytime (afternoons), ranging from 10 to 15% of the PBL height.
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Fig. 3. CO2 concentrations observed during several flights of the ALAR campaign for 15, 17 and 19 June (on the left) compared to WRF-
ChemCO2 concentrations using SiBcrop fluxes (=before flux optimization) (on the right). Colors indicate the mixing ratio range in ppm.
The top of the PBL is indicated by the large vertical gradients from low to high mixing ratios in the free troposphere (green dashed line).
The differences between observed and simulated PBL heights are large during transition periods (mornings), overwhelming signals during
nighttime, but are low during daytime (afternoons), ranging from 10 to 15% of the PBL height.

Mead (with three sites on irrigated, rainfed, and irrigated
with crop rotation ecosystems) (Verma et al., 2005), and two
in grassland areas: Brookings and Fermi prairie sites (Mata-
mala et al., 2008), all part of the Ameriflux network 1 (Fig. 1).
We focused our evaluation on the flux sites whose dominant
landcover was corn or grassland in order to gauge the suc-
cess of the inverse fluxes over the most represented ecosys-
tems. The four eddy flux sites over corn are reliable indica-
tors of the temporal variability but representation errors re-
main large when compared to our 20 km resolution inverse
product. The ecosystem variability in one given grid point
at 20 km resolution is far from negligeable. The fraction of
corn in one pixel is between 40 to 60% in the corn belt area
(referred here as corn-dominated pixels). Eddy flux measure-
ments indicate larger uptake during the growing season, corn
being the most active plant in term of photosynthetic activity
at this time of the year (Verma et al., 2005). The uptake is
larger by at least a factor of two during the maximum growth
period (July) compared to other plant types. We used the sea-
sonal cycle and the week-to-week variations to evaluate the
temporal corrections in the inverse fluxes. We assume that
the observed variability in the eddy-flux measurements is ro-
bust and well-correlated with larger scale variability, but too
limited to be extrapolated to a region (Wang et al., 2006). We

1http://public.ornl.gov/ameriflux/

focus on temporal behaviour observed during the season and
droughts occuring later in summer of the year 2007. We rep-
resented eddy flux site errors by the variations across sites,
assuming that representation errors are dominant in our con-
text.

3 Results

3.1 Aircraft data and transport errors due to vertical
mixing

We analyze here model-data mismatch using prior fluxes and
pre-processed boundary conditions to characterize the ver-
tical structures of the lower troposphere and assign realis-
tic uncertainties representing transport errors due to incor-
rect vertical mixing. The absolute concentration mismatch
is not considered as an indication of transport errors as the
CO2 flux errors represent the majority of the final mismatch.
In Figs. 3 and 4, we show the simulated CO2 concentrations
within 4ppm-intervals represented by colored circles against
aircraft observed concentrations during 6 different aircraft
flights. The PBL heights defined by the vertical gradient in
CO2 show relatively good agreement during the afternoon
with differences of about 10 to 15%, in the range of the ob-
served variability of the entrainment zone depth between the
convective boundary layer and the free troposphere (Grabon
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Fig. 4. Same figure for June 23, 24 and 25 flights
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Fig. 4. Same figure for 23, 24 and 25 June flights.

et al., 2010), whereas transition periods are not well cap-
tured by the model. In the early morning (19 June, 7 a.m.
to 10 a.m.), the PBL is well-developed in the model whereas
no vertical gradient between the PBL and the free tropo-
sphere is observed during the flight. In the late afternoon (17
and 19 June, from 7 p.m. to 9 p.m.), the vertical distributions
of CO2 are simulated well by the model. We defined the
standard deviations (diagonal terms of the R matrix) based
on this comparison by assigning large errors during the late
morning (10 a.m.–12 p.m.) of 30 to 50% of the total model-
data mismatch, then smaller errors of 10 to 15% of the sig-
nal as transport errors (2 to 3 ppm in summer on average)
during the well-mixed conditions, and finally very large er-
rors for nighttime concentrations (after 8pm) that almost re-
move entirely the observational constraint during these hours
(�night=100 ppm).

3.2 Backward/Forward transport comparison

We evaluate the internal consistency of our forward and in-
verse modeling systems which represents the adjoint and
the aggregation errors. We also eliminate time periods
when there are significant discrepancies between forward
and backward simulated mixing ratios. We do this by com-
puting the CO2 mixing ratios predicted at the tower sites us-
ing the same prior fluxes with both WRF-chem and LPDM,
and compare these hourly estimates over the entire 7-month
period of study.

The initial mismatch between the Eulerian model (WRF-
chem) and the Lagrangian model (LPDM) is affected by
large differences in the concentration time series during a
few days per month (one isolated day or few hours). These
larges biases are correlated with more stable conditions in the
lower atmosphere and indicates clear disagreements between
the Lagrangian model and the Eulerian simulations. We ap-
plied a filter to remove these periods in our inverse system
by increasing observation errors to 100 ppm for these obser-
vations. The assigned weights are equivalent to neglect these
observations. The threshold that we chose as indicative of
inconsistent dynamics, is 2� of the residual distribution (de-
fined as the square root of the mean square of the half-hourly
model-model difference), where � is computed on a weekly
basis for each tower. This threshold ranges from 2 to 7 ppm
depending on the season and the tower. We re-compute the
daytime biases after removing the large mismatch periods. In
summer, when the CO2 surface flux is large (implying large
atmospheric signals), the standard deviation of the residuals
are now lower than±2.2 ppm, and show an averaged summer
bias of 0.12 ppm.
We then added an uncertainty corresponding to the stan-

dard deviation for each week of 1 to 2 ppm to the initial
WRF errors (diagonal terms in R) for the misrepresentation
of the Eulerian dynamics by the Lagrangian model based
on these results. During winter, weekly and seasonal bi-
ases are much lower, respectively less than 1.9 ppm at the
hourly time scale and equal to 0.1 ppm on average. But

www.atmos-chem-phys.net/12/337/2012/ Atmos. Chem. Phys., 12, 337–354, 2012



346 T. Lauvaux et al.: Corn Belt inversion

Fig. 5. CO2 concentration differences between the observed CO2 concentrations by the aircraft
and simulated by CTv09 at the four aircraft sites (indicated by the cardinal directions) in the
Planetary Boundary Layer (in red), the free troposphere (in blue), and column-averaged PBL
(black diamonds).
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Fig. 5. CO2 concentration differences between the observed CO2
concentrations by the aircraft and simulated by CTv09 at the four
aircraft sites (indicated by the cardinal directions) in the Planetary
Boundary Layer (in red), the free troposphere (in blue), and column-
averaged PBL (black diamonds).

the surface flux contribution to the atmospheric variability is
lower, which explains the apparent smaller mismatch. We
defined the additional uncertainties using the same method-
ology as for summer, from 0.2 to 0.9 ppm for the variances
of the observation errors. The forward/backward revealed
occasional large disagreements due to the Lagrangian model.
Seasonal biases that will influence our final balance are small
after removal of these periods (0.12 ppm over summer, and
0.1 ppm over winter), limiting the impact on the inverse CO2
flux balance.

3.3 Pre processing for boundary conditions

The potential boundary inflow corresponds to the mole frac-
tion from the CTv09 inverse system using the TM5 trans-
port model at 1� resolution. We directly compared the mole
fractions to observed mixing ratios from aircraft profiles at
four different sites, each site being attributed to the closest
boundary (or two for AAO and HIL sites) of the domain (cf.
Sect. 2.5.2). In Fig. 5, we present the model-data mismatch
in the PBL (blue letters), in the free troposphere (red letters),
and the difference of the averaged model-data mismatch over
the PBL (black diamonds), computed at the exact flight times
and locations. If several profiles were available over a week,
we show here the averaged differences. In the figure, the let-
ters correspond to the boundaries of the domain (East, West,
North, South) for each week. The very large residuals in June
(more than 20 ppm) are observable within the two lower lev-
els of the PBL, where the TM5 model is usually underesti-
mating the vertical mixing (vertical profiles show clear un-
expected gradients during convective days). We used the dif-
ferences of the averaged mixing ratios over the higher levels
of the PBL (black diamonds) to avoid these large differences
in the lower levels of CTv09.
In Fig. 6 (a), we present the histogram of the residuals

between the aircraft data and the CTv09 mixing ratios. The
averaged model-data mismatch (or bias) is about 1.17 ppm

over summer (week 1 to 12) and 0.55 ppm over the 7 months.
We investigate the impact of the 7-month bias on the final
inverse flux balance over the region in Sect. 4.1. In Fig. 6 (b),
no bias toward higher or lower mixing ratios is observed. We
conclude here that, without the aircraft data correction, the
weekly boundary conditions may contain large errors during
critical periods, but on average over the 7 months, the bias
remains modest (0.55 ppm).

3.4 CO2 flux time series

The temporal variability observed at the local level using
eddy-flux tower measurements is used to evaluate the pos-
terior fluxes over two different ecosystem types. While this
comparison is limited by representation errors, we believe
that it is valid to compare the temporal patterns in both flux
estimates. We compared our results by selecting the posterior
fluxes in pixels where one ecosystem type covers more than
40% of the landscape. In Fig. 7a, we present daily-daytime
averages of the prior fluxes from Sibcrop compared to the ob-
served fluxes (averages of the two sites) from two eddy-flux
tower measurements, with their standard deviations, repre-
senting the grassland ecosystems in the region (Brookings
and Fermi). The two sites are significantly different in 2007
resulting in a large representation error (in green in Fig. 7a).
The maximum of uptake in June indicates that the growing
season peak for grassland ecosystems is outside our study pe-
riod. The seasonality of this ecosystem is accentuated by the
atmospheric observations (larger uptake in July compared to
the prior flux) but the uptake in June remains too low, under-
estimated after inversion. The large boundary condition dif-
ferences observed in Fig. 5, despite the corrections applied,
might still affect the inverse fluxes during this period. Af-
ter June, the inverse flux variablity is well correlated with
the observed eddy-flux variability with a peak of uptake in
mid-July and a decrease of the uptake in mid-August due to
a drought in the North West of the domain.
Concerning the corn dominated area (cf. Fig. 8), the sea-

sonal variability is well-correlated with the observations but
varies depending on the location. The correlations over
the 7 months with the 4 different sites are respectively
0.832, 0.948, 0.964, and 0.950 with the prior compared
to 0.91, 0.955, 0.965, and 0.953 with the posterior fluxes.
The correlation with the mean (average of the time series
from the four sites) is about 0.94 with the prior fluxes, and
0.96 with the posterior. The mismatch (square root of the
squared differences) is decreasing from 1.949 µmolm�2 s�1
to 1.915 µmolm�2 s�1 on average. We see here that the ini-
tial fluxes were highly correlated with the observations, with
consistent but relatively small corrections after inversions on
a weekly basis. In northern Illinois (East of the domain), the
inverse fluxes show a late start to the growing season (end of
June). The posterior fluxes show distinct temporal patterns
for the West and the East of the domain. The observations
indicate a large standard deviation across eddy-flux sites (as
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(a) (b)

Fig. 6. Histogram of the model-data mismatch at the boundaries with the mean and standard
deviation used to correct for the mean bias and to define uncertainties related to the boundaries
in the inversion (on the left) and the linear regression between observed aircraft and CTv09

modeled CO2 mixing ratios (on the right)
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Fig. 6. Histogram of the model-data mismatch at the boundaries with the mean and standard deviation used to correct for the mean bias and
to define uncertainties related to the boundaries in the inversion (on the left) and the linear regression between observed aircraft and CTv09
modeled CO2 mixing ratios (on the right).

(a)

(b)

Fig. 7. Net Ecosystem Exchange comparison between Sibcrop grass-dominated pixels and
eddy flux towers over grassland (Fermi prairie and Brookings) for the 7 months in umol.m2.s�1

(in green): (a) SiBcrop prior (in blue) and (b) inverse fluxes (in red). The improvement after
inversion remains limited in June but posterior fluxes (in red) are in better agreement with the
observed fluxes on average over the period.
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Fig. 7. Net Ecosystem Exchange comparison between Sibcrop
grass-dominated pixels and eddy flux towers over grassland (Fermi
prairie and Brookings) for the 7 months in umol.m2.s�1 (in green):
(a) SiBcrop prior (in blue) and (b) inverse fluxes (in red). The
improvement after inversion remains limited in June but posterior
fluxes (in red) are in better agreement with the observed fluxes on
average over the period.

seen for grass), two of them being irrigated (less affected by
the sporadic dry periods) increasing the overall flux uptake
over summer in the Western Corn Belt. The absolute val-
ues of the posterior fluxes remain smaller than the observed
fluxes, as corn occupies only about 40 to 60% of the pixel
surface, mixed with soybean and other crop types. In the

(a)

(b)

Fig. 8. Net Ecosystem Exchange comparison between Sibcrop corn-dominated pixels for the
western (affected by droughts in July and August, in purple)) and the eastern part of the domain
(in light blue), and eddy flux towers over corn fields (in green), irrigated or rainfed (Bondville,
Rosemount G19 and G21, and Mead) in umol.m2.s�1: (a) SiBcrop prior (in blue) and (b) inverse
fluxes (in red). Posterior fluxes are lower on average due to mixed vegetation types over the
pixels.
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Fig. 8. Net Ecosystem Exchange comparison between Sibcrop
corn-dominated pixels for the western (affected by droughts in July
and August, in purple)) and the eastern part of the domain (in light
blue), and eddy flux towers over corn fields (in green), irrigated
or rainfed (Bondville, Rosemount G19 and G21, and Mead) in
umol.m2.s�1: (a) SiBcrop prior (in blue) and (b) inverse fluxes (in
red). Posterior fluxes are lower on average due to mixed vegetation
types over the pixels.

model, the presence of soybean with a lower uptake compen-
sates for the large corn uptake. For grassland, the vegetation
fraction in the grass-dominated pixels is usually larger (up to
80%) explaining the better agreement between the modeled
fluxes and the observed eddy-flux data. Despite the smaller
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(a) (b)

(c) (d)

Fig. 9. Map of the CO2 fluxes accumulated from June to December in TgC.degree�2 over the
MCI using CarbonTracker2009 inverse fluxes as prior: (a) prior and (b) posterior fluxes; and
direct flux estimates from SiBcrop as prior fluxes: (c) prior fluxes and (d) posterior fluxes

49

Fig. 9. Map of the CO2 fluxes accumulated from June to December in TgC.degree�2 over the MCI using CarbonTracker2009 inverse fluxes
as prior: (a) prior and (b) posterior fluxes; and direct flux estimates from SiBcrop as prior fluxes: (c) prior fluxes and (d) posterior fluxes.

surface flux corrections in wintertime (i.e. limited improve-
ment, discussed in Sect. 4.3), the posterior fluxes show a bet-
ter correlation with the observed fluxes over the 7 months (cf.
Fig. 7b), and no clear bias was introduced by the system. We
discuss in Sect. 4.3 the capacity of the system to correct for
wintertime flux biases.

3.5 Convergence of the prior fluxes and impact on the
posterior distribution

We present in this section the spatial distribution of the
prior and posterior fluxes, using sibcrop (Fig. 9c) and CTv09
(Fig. 9a) as two distinct priors. First, both posteriors show
similar features in space, as a maximum of uptake in north-
ern Illinois, and a stronger sink in Wisconsin, suggesting that
the observational constraint is sufficient in both cases to de-

tect the main spatial characteristics of the fluxes. But several
areas remain correlated to the initial prior flux distribution,
such as in Kansas and Nebraska, west of Mead (cf. Fig. 9b).
Other areas show clear posterior flux structures that are not
present in any prior. In northern Illinois for example (around
Kewanee), the strong sink indicated by the posterior is well
defined in both cases. This correction is consistent with high
corn productivity with +10% for the year 2007 compared to
the past years as indicated by the annual USDA-NASS report
1. Northern Iowa, usually very productive in terms of corn
Net Primary Production, was affected by severe droughts
during August 2007, whereas southern regions recorded av-
eraged precipitations.

1www.nass.usda.gov/il
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In general, areas between tower sites show similar pos-
terior flux distributions and magnitudes, resulting from the
large constraint brought by the superimposed observation in-
fluence functions. The corn belt area, clearly defined in space
in both priors, becomes wider with smaller spatial gradients.

3.6 CO2 flux balance: final balance and uncertainties

In this section, we investigate the sensitivity of the integral
of the inverse fluxes across the region, and its sensitivity to
the assumptions. These uncertainties come from the differ-
ent choices one could make, all being realistic, with different
degrees of complexity. Other tests are performed in Sect. 4
for additional errors or biases that may affect the inverse esti-
mate but are not part of the present system, as e.g. the impact
of remaining biases in boundary conditions that may not have
been removed. These second tests help quantify the sensitiv-
ity of the system to the different components for future in-
verse systems, in other areas or using different prior fluxes.
Using two different prior fluxes (CTv09 and SiBcrop), we ob-
tain similar posterior fluxes (cf. Table 1) though the prior
fluxes were significantly different. We defined next several
cases in which we dramatically increased or decreased uncer-
tainties (prior flux errors, nighttime and daytime observation
errors), inserted transport error correlations in time, modify-
ing prior flux error correlations in space, and increased the
time window over which the boundary conditions were op-
timized from one hour to four days. We increased our ini-
tial prior variances by 20% for the first case. For transport
errors, we decreased the daytime standard deviations �B to
2 ppm, about a factor two lower than our initial summertime
standard deviations. We also considered the use of nighttime
observations by decreasing the uncertainties to 10 ppm. The
different cases are summarized in Table 1.
Increasing prior flux variance (larger �B ) has little impacts

on the posterior flux, similar to decreasing the observation er-
ror variances during the day (lower �

day
R ). This result, when

compared to the large impact of temporal correlations in the
observation errors (⇢(Xt ,Xt+n) 6=0), reinforces the importance
of the covariances in our system (the structure of the er-
rors), here having more impact on the regional fluxes than
the daytime variances. Higher confidence in nighttime data
(� nightR =10 ppm) shows the largest decrease of NEE on the
final flux balance. This impact is consistent with the con-
sistently lower nighttime mixing ratios simulated by WRF-
Chem. Fitting the nighttime observations is translated into
an increase of the positive nighttime flux, decreasing the net
sink over the region. Considering the impact of observation
error correlations in time when using CTv09 as prior fluxes
(⇢(Xt ,Xt+n) 6=0), the impact is lower (only 33 TgC change
compared to 41 TgC change when using SiBcrop). We also
examined the impact of using different time windows for the
boundary conditions (Tbc = 90 h) and noticed a change of
16 TgC on the 7-month regional balance. Finally, we simpli-
fied the prior error correlation by using a simple correlation

length (L = 300 km), without considering ecosystem types
(⇢B = f (dist)).
The posterior uncertainties from our system are, over

the 7-month period, about 30 TgC (depending on the se-
lected case). Considering the different setups we defined,
the uncertainty in the regional balance due to assump-
tions in the inverse system is about 15 TgC, with a mean
slightly weaker than the reference setup (mean balance of
�183 TgC±16 TgC). This quantity is a range of solutions
but is not following a Gaussian distribution. We excluded
here the low nighttime transport error case, this one being
fundamentally incorrect. For example, the choice of tempo-
ral correlations in the observation errors or the structure of
the prior errors are motivated by previous studies and one
may argue about their relevance. We consider here that any
assumption made in the system, if not well established, has
to be tested and considered as an additional source of uncer-
tainty. In Sect. 4.1, we present the different sources of uncer-
tainties and combine these to our posterior uncertainties.

4 Discussions

4.1 Boundary conditions and remaining uncertainties

We applied a pre-treatment of the boundary concentrations
by correcting model-data mismatch at the boundaries before
inversion instead of adding aircraft data to the inverse sys-
tem to correct for the CO2 inflow. The comparison between
the observed and the simulated CTv09 concentrations could
lead to an incorrect quantification of the boundary inflow er-
rors for two main reasons: first, the aircraft profiles, punctual
observations over the column, are not representative of the
entire boundary of 1000 km long and the entire week; and
second, the PBL mixing ratios affected by vertical mixing
errors in CTv09 transport model (currently the TM5 model
Krol et al., 2005) could be different in WRF-ChemCO2 when
remixed by our PBL scheme. We computed boundary mix-
ing ratios at the tower locations. Along their path within the
simulation domain from the boundary to the tower location,
CTv09 mole fractions are redistributed on the vertical. The
differences between CTv09 and aircraft data at the boundaries
might not be valid at the tower locations, because the vertical
mixing in WRF-ChemCO2 modified the original vertical dis-
tribution of the CTv09 mole fractions. Because TM5 model
is affected by low vertical mixing in the lower atmospheric
levels (levels one and two mainly), we only used differences
integrated over the PBL.
In the inversion, we defined the inflow as time series, in-

stead of influence functions and gridded boundaries, to limit
the increase of the dimension of the state vector. The CO2
vertical distribution at the boundaries is also very sensitive
to PBL dynamics and may contain large uncertainties at the
pixel level if we grid the boundaries of our domain. Previ-
ous studies have also shown that the error reduction using
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Table 1. Regional CO2 flux balance from June to December 2007 in TgC over the MCI using Sibcrop and CarbonTracker2009 as prior fluxes
in the reference setup (prior and posterior), then assuming larger uncertainties in the prior (= larger �B ), more confidence in nighttime data
i.e. 10 ppm instead of 100 ppm (=lower �

night
R ), more confidence in daytime data i.e. 2 ppm instead of 3 ppm for the lower limit (=lower

�
day
R ),temporal correlations in hourly observation errors between the hour t with the following n hours (= ⇢(Xt ,Xt+n) 6= 0 or ⇢(t) 6= 0), a
longer time period to correct for boundary influence (= Tbc =90h), and prior error correlations based on distance only (⇢B = f (L)).

prior post large �B low �
night
R low �

day
R ⇢(t)6=0 Tbc = 90 h ⇢B = f (L)

SiBcrop �109 �194 �190 �149 -195 �153 �178 �179
CTv09 �198 �215 / / / �182 / /

aircraft data is limited by the shorter time window of avail-
able observations (Lauvaux et al., 2008). We decided here to
use the aircraft observations in a pre-processing of the bound-
aries and not directly as observations in the inverse system.
The aircraft profiles available once a week on average over
few hours contain little information to optimize the weekly
fluxes biases and the boundaries. Using our approach in the
future, more sophisticated methods could be applied as data
nudging including additional dataset from commercial flight
CO2 profiles or satellite products where available.
Here, we investigate the impact of potential biases in the

boundary concentrations by adding a constant change of
+1 ppm. On the 7 month regional balance, this bias leads
to a change of +45 TgC. As explained in Sect. 3.3, the ver-
tical mixing errors in TM5 (CTv09) have a limited impact at
the observation locations thanks to the remix of the lower
part of the column along its path in the WRF simulation do-
main. This element is of major importance to avoid large dif-
ferences as observed in the lower troposphere in the CTv09
residuals (cf. Fig. 5 in red). The potential bias due to in-
correct boundary conditions can be estimated at half a ppm
(defined as 1� of the error distribution) based on the initial
model-data mismatch using the NOAA aircraft vertical pro-
files. This bias is translated in terms of potential errors on the
final balance into a ±24 TgC. Because we are not consider-
ing the improvement of the boundary conditions thanks to
the use of aircraft data, this error represents an upper limit on
the 7-month balance. This value seems reasonable compared
to the large sink of our region. But, because of the unique
strength of the atmospheric sink due to the high corn produc-
tivity entirely harvested (responsible for the apparently large
atmospheric sink), our region is not common and many other
areas may suffer from this large potential bias compared to
their relatively low annual flux (e.g. Göckede et al., 2010a).
Further measurements will be needed to better constrain the
error in the boundary conditions.

4.2 Temporal window for the boundaries –
what is the impact?

The time length for the boundary conditions in our system,
from hourly to a few days, has additional impacts on the cor-
rection of biases in the inflow. The surface fluxes are cor-

rected on a weekly time scale. If the time resolution of the
boundaries in the state vector is closer to one week, some
signals originally attributed to the surface are transferred to
the boundaries. But this assumption can be justified by the
fact that inflow errors occur at the time scale of synoptic
changes rather than the scale of the local dynamics. We in-
vestigated the two assumptions (one assuming rapid changes
at the boundaries and the second slow changes driven by syn-
optic conditions) by changing the time period of the bound-
aries in the state vector as explained in Sect. 2.5.3. Table 1
shows that a change of the order of 16 TgC was removed
from the surface fluxes and transposed to the inflow. In or-
der to compare the boundary condition corrections in both
cases, we estimated the boundary condition impact on the
optimized atmospheric concentrations. The first case, us-
ing hourly concentrations at each tower, shows large hour-to-
hour variations. We then averaged over the longer period of
time (90 h) and noticed that the contribution from the bound-
aries can change by several ppm when using hourly con-
centrations at the boundaries or averages over several days.
Weekly surface fluxes changed depending on the inflow av-
eraging period. But the final surface flux balance remains
similar in both cases, with only 0.3 to 0.8 ppm (standard de-
viations of the corrections) reattributed to the boundary cor-
rections, and similar mean corrections (about 0.4 ppm in both
cases). Over the 7 months, less than 0.5 ppm of the 90h-
averaged hourly boundary correction is due to the transfer
of information from the surface to the boundary concentra-
tions, implying an additional standard deviation of about 7 to
10 TgC in the final regional carbon balance. At this point, the
time window for boundary conditions will remain an under-
constrained parameter in our system, considering the related
uncertainty as additional errors in the final balance. Further
study will focus on the autocorrelation of the residuals to de-
fine the time scale of the inflow errors.

4.3 What is the real potential of convergence of the
system?

The impact of the prior flux spatial distribution affects several
areas despite the large amount of atmospheric observations
used to constrain the surface fluxes. For the 7-month bal-
ance, both priors end up at relatively similar values around
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�205 TgC±10 TgC. Two additional cases were designed to
evaluate the potential of convergence of the system. The first
case assumes an additional flux bias in summer and in winter,
by multiplying the SiBcrop prior fluxes by 1.5, i.e. increasing
the seasonal signals considerably. This biased prior presents
a larger 7-month sink (�164 TgC instead of �109 TgC) be-
cause of the large increase of the summer uptake compared
to the relatively lower increase of the wintertime net positive
flux. The results show that the summer bias is almost en-
tirely removed (95% retrieved), but the winter time bias af-
ter inversion is partially retrieved, with a difference with the
reference inversion of 0.95 TgC per week on average, cor-
responding to a posterior 7-month balance of �185 TgC. It
clearly indicates that the inverse system is limited in winter
because of the larger boundary condition contribution com-
pared to the surface flux signal. We computed the ratio of
the boundary contribution to the surface flux contribution
on hourly concentrations. In July, about 10 to 20% is due
to boundary contribution versus 30 to 40% during winter.
However, by including an additional 4.1 TgC per week in
winter, the inversion corrected for 77% of this bias.
The second case uses a SiBcrop simulation affected by

unrealistic water stress in summer. The 7-month balance
of this prior is close to zero (�1.9 TgC). Starting with this
erroneous prior flux, the posterior flux balance ends up at
�147 TgC. The inverse system, even if not able to retrieve
or converge to previous inverse estimates in this case, showed
a large correction of the initial balance retrieving 80% of the
reference posterior flux balance. It suggests that the obser-
vational constraint is large enough to reach a reasonable es-
timate despite the distant initial carbon balance. As shown
in Sect. 3.6, the spatial structure may be affected by the ini-
tial flux distribution. But the regional balance itself is highly
constrained by the observations. Further investigations will
consider the impact of observations on the inverse fluxes for
concentration tower network design.
The transport model errors were evaluated using aircraft

data vertical profiles. Additional errors from the Lagrangian
model were also quantified by a forward-backward compar-
ison and reasonable biases were included in our final flux
uncertainty assessment. Part of the errors were not consid-
ered due to the lack of data to evaluate the atmosphere dy-
namics, as the advection of air or the convection scheme.
We tested the potential impact of the daytime observation er-
rors (variances) in the system by decreasing uncertainties to
2 ppm, and little impact affected our results (less than 1 TgC
change). Only uncertainties decreased in this case, with an
underestimation of the posterior variances. Nighttime prior
errors appeared more critical in our system. This result is
consistent with past studies (e.g. Lauvaux et al., 2008) that
showed the importance of the nighttime flux signals in the
daytime observations to constrain the overall flux balance,
affected by incorrect nighttime transport. Even though we
almost removed the nighttime observations in our system
(�R = 100 ppm), transport model errors during nighttime af-

fect the daytime observation signals. This result explains
also the strong impact of temporal error correlations rein-
forcing the impact of transition period observations (morning
and evening). The performances of actual mesoscale models
during nighttime (or more generally during stable conditions)
have to be improved in the future to reduce actual uncertain-
ties, despite the absence of nighttime data use in the inverse
system.
Finally, the posterior uncertainties of the inverse fluxes at

about 30 TgC and the different sensitivity tests (16 TgC),
including potential biases from the boundaries of about
24 TgC, gives a combined uncertainty of 34 TgC, exclud-
ing the additional 24 TgC of potential additional biases for
a regional sink of about 183 TgC. The present calculation is
not a posterior uncertainty following a Gaussian distribution
but an interval of confidence with an undefined distribution.
Remaining errors are hard to quantify precisely (e.g. prior
flux error correlations, complete transport model errors), and
additional biases are likely to arise in future model intercom-
parisons. Further investigations will include transport eval-
uation and comparisons to independent estimates from in-
ventory data at the regional level. High quality agricultural
inventories made in the area (West et al., 2011) will allow the
comparison to independent annual estimates of the regional
carbon balance.

5 Conclusions

We presented here an inverse flux estimate at high resolution
over the corn belt area for 2007 using eight CO2 concentra-
tion towers and two different prior fluxes. The sensitivity to
the different assumptions was used to evaluate a more com-
plete final uncertainty for our inverse flux balance. Bound-
ary conditions were corrected with aircraft data profiles, po-
tentially leading to an error (or a potential bias) of about
24 TgC over the 7 months. But more critical is the impact
of nighttime transport model errors and temporal error cor-
relations in the simulated concentrations. Total uncertainties
are about 34 TgC including 16 TgC from the assumptions
made in the system, 30 TgC from the prior and the trans-
port model, and 24 TgC of potential bias from the bound-
ary conditions. The impact of boundary conditions is inde-
pendent of the regional balance but only of the domain size,
limiting the actual method to regions presenting large annual
flux balances (more than 20 TgC year�1 for a 106 km2 do-
main). The degree of convergence indicates a robust signal
for a sink of about 180 TgC for the June to December period.
Spatial patterns inherited from the prior fluxes were still de-
tectable in the posterior fluxes especially on the sides of the
domain, despite the large observational constraint. The atmo-
spheric signal remains large enough to constrain the regional
flux balance but spatial distribution required that influence
functions from different towers were super-imposed. Clear
spatial patterns in the posterior fluxes were identified (as the
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strong uptake in northern Illinois for the present year) despite
the use of different priors.
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Ter Maat, H. W., Pérez-Landa, G., and Donier, S.: Atmospheric
CO2 modeling at the regional scale: an intercomparison of 5
meso-scale atmospheric models, Biogeosciences, 4, 1115–1126,
doi:10.5194/bg-4-1115-2007, 2007a.

Sarrat, C., Noilhan, J., Lacarrr̀e, P., Donier, S., Lac, C., Calvet,
J. C., Dolman, A. J., Gerbig, C., Neininger, B., Ciais, P., Paris,
J. D., Boumard, F., Ramonet, M., and Butet, A.: Atmospheric
CO2 modeling at the regional scale: Application to the Car-
boEurope Regional Experiment, J. Geophys. Res., 112, D12105,
doi:10.1029/2006JD008107, 2007b.

Schuh, A. E., Denning, A. S., Corbin, K. D., Baker, I. T., Uliasz,
M., Parazoo, N., Andrews, A. E., and Worthy, D. E. J.: A
regional high-resolution carbon flux inversion of North Amer-
ica for 2004, Biogeosciences, 7, 1625–1644, doi:10.5194/bg-7-
1625-2010, 2010.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 2, National Center of Atmo-
spheric Research, Boulder, CO, USA, 100 pp., 2005.

Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Pe-
ters, W., Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P.,
Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko,
N., Lloyd, J., Jordan, A., Heimann, M., Shibistova, O., Langen-
felds, R. L., Steele, L. P., Francey, R. J., and Denning, A. S.:
Weak Northern and Strong Tropical Land Carbon Uptake from
Vertical Profiles of Atmospheric CO2, Science, 316, 1732–1735,
doi:10.1126/science.1137004, 2007.

Sweeney, C., Karion, A., Wolter, S., Neff, D., Higgs, J. A., Heller,
M., Guenther, D., Miller, B., Montzka, S., Miller, J., Conway, T.,
Dlugokencky, E., Novelli, P., Masarie, K., Oltman, S., and Tans,
P.: Carbon dioxide climatology of the NOAA/ESRL Greenhouse
Gas Aircraft Network, Journal of Geophysical Research, in prep.,
2011.

Tans, P. P., Fung, I. Y., and Takahashi, T.: Observational constraints
on the global atmospheric CO2 budget, Science, 247, 1431–
1438, 1990.

Tarantola, A.: Inverse Problem Theory and Methods for Model Pa-
rameter Estimation, SIAM, (ISBN 0-89871-572-5), 2004.

Uliasz, M.: Lagrangian particle modeling in mesoscale applica-
tions, in: Environmental Modelling II, edited by: Zanetti, P.,
Computational Mechanics Publications, 71–102, 1994.

Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T.,
Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G.,
Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson,
A. A., and Walter-Shea, E. A.: Annual carbon dioxide exchange
in irrigated and rainfed maize-based agroecosystems, Agr. For-
est Meteorol., 131, 77–96, doi:10.1016/j.agrformet.2005.05.003,
2005.

Wang, J.-W., Denning, A. S., Lu, L., Baker, I. T., Corbin, K. D., and
Davis, K. J.: Observations and simulations of synoptic, regional,
and local variations in atmospheric CO2, J. Geophys. Res., 112,
D04108, doi:10.1029/2006JD007410, 2007.

Wang, W., Davis, K. J., Cook, B. D., Butler, M. P., and Ricciuto,
D. M.: Decomposing CO2 fluxes measured over a mixed ecosys-
tem at a tall tower and extending to a region: A case study, J.
Geophys. Res., 111, G02005, doi:10.1029/2005JG000093, 2006.

West, T. O., Bandaru, V., Brandt, C. C., Schuh, A. E., and Ogle,
S. M.: Regional uptake and release of crop carbon in the United
States, Biogeosciences, 8, 631–654, doi:10.5194/bg-8-631-2011,
2011.

Zhao, C. L., Tans, P. P., and Thoning, K. W.: A high precision
manometric system for absolute calibrations of CO2 in dry air, J.
Geophys. Res., 102, 5885–5894, 1997.

Atmos. Chem. Phys., 12, 337–354, 2012 www.atmos-chem-phys.net/12/337/2012/

http://dx.doi.org/10.5194/acp-7-1835-2007
http://dx.doi.org/10.1073/pnas.0708986104
http://dx.doi.org/10.5194/acp-5-3173-2005
http://dx.doi.org/10.1175/JTECH-D-11-00063.1
http://dx.doi.org/10.1175/JTECH-D-11-00063.1
http://dx.doi.org/10.5194/acp-9-5331-2009
http://dx.doi.org/10.5194/bg-4-1115-2007
http://dx.doi.org/10.1029/2006JD008107
http://dx.doi.org/10.5194/bg-7-1625-2010
http://dx.doi.org/10.5194/bg-7-1625-2010
http://dx.doi.org/10.1126/science.1137004
http://dx.doi.org/10.1016/j.agrformet.2005.05.003
http://dx.doi.org/10.1029/2006JD007410
http://dx.doi.org/10.1029/2005JG000093
http://dx.doi.org/10.5194/bg-8-631-2011

