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[1] Simulations of the global water and carbon cycle are sensitive to the model representation
of vegetation phenology. Current phenology models are empirical, and few predict
both phenological timing and leaf state. Our previous study demonstrated how satellite
data assimilation employing an Ensemble Kalman Filter yields realistic phenological
model parameters for several ecosystem types. In this study the data assimilation framework
is extended to global scales using a subgrid‐scale representation of plant functional
types (PFTs) and elevation classes. A reanalysis of vegetation phenology for 256 globally
distributed regions is performed using 10 years of Moderate Resolution Imaging
Spectroradiometer (MODIS) fraction of photosynthetically active radiation (FPAR)
absorbed by vegetation and leaf area index (LAI) data. The 9 · 108 quality screened
observations (corresponding to <1% of the globally available MODIS data) successfully
constrain a posterior PFT‐dependent phenological parameter set. It reduces the global FPAR
and LAI prediction error to 20.6% and 14.8%, respectively, compared to the prior prediction
error. A 50 year long (1960–2009) daily 1° × 1° global phenology data set with a mean
FPAR and LAI prediction error of 0.065 (−) and 0.34 (m2 m−2) is generated. Temperate
phenology is best explained by a combination of light and temperature. Tropical evergreen
phenology is found to be largely insensitive to moisture and light variations. Boreal
phenology can be accurately predicted from local to global scales, while temperate and
mediterranean landscapes might benefit from a better subgrid‐scale PFT classification
or from a more complex canopy radiative transfer model.
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1. Introduction

[2] Land surface vegetation is an interactive part of the
climate system. Leaf transpiration influences cloudiness,
temperature and moisture patterns of the atmosphere on the
synoptic to climatological timescale [Heck et al., 1999;
Tsvetsinskaya et al., 2001; Lu et al., 2001; Kim and Wang,
2005; Betts and Viterbo, 2005; Betts et al., 2007]. Vegeta-
tion biomass acts as a sink (or source) for the atmospheric
carbon budget on a seasonal to centennial timescale [Keeling
et al., 1996; Kramer et al., 2000; Schaefer et al., 2005; Piao
et al., 2007; Körner, 2003]. The two processes regulating
water loss and carbon uptake are coupled [Schimel et al.,
1997; Sellers et al., 1997] and both depend on leaf stomatal
opening and leaf presence. Leaf physiology controls stomates
and is largely driven by local scale and short term weather
events like the diurnal variability of temperature and radia-
tion [Jarvis, 1976; Law et al., 2002; Larcher, 2003]. Leaf
phenology on the other hand describes the timing of leaf

appearance, presence and senescence and can be linked to
the large scale seasonal to interannual climatic variability
[Scheifinger et al., 2002;Menzel et al., 2006; Penuelas et al.,
2009; Körner and Basler, 2010].
[3] Leaf physiology and leaf phenology are treated sepa-

rately in most land surface models (LSMs) used to simulate
the terrestrial water and carbon cycle. While several mecha-
nistic formulations of plant physiological processes have
been developed during the last three decades [Jarvis, 1976;
Farquhar et al., 1980], highly empirical representations of
plant phenology are used in LSMs [Cox, 2001; Foley et al.,
1996; Levis and Bonan, 2004; Jolly et al., 2005]. In several
LSMs, phenology is used as a means to scale leaf level
physiological processes to the canopy level [Sellers et al.,
1996b, 1997]. Phenology models used in LSMs simulate a
continuous biophysical state of vegetation at the landscape
scale rather than the timing of species‐specific and local‐scale
events like flowering or bud burst. The latter information is
available from long term phenological observations that are
mostly confined to temperate climate zones [van Vliet et al.,
2003; Rutishauser et al., 2007].
[4] However, the largest phenological model deficiencies

are found for subtropical and mediterranean vegetation
because model parameters are often generalized from tem-
perate vegetation to global scales [Stöckli et al., 2008b].
Models often simulate a temporal mismatch in spring green
up in the order of 1–2 months and show unrealistic drought
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responses of LAI that have adverse effects on the predicted
terrestrial water and carbon fluxes [Kucharik et al., 2006;
Randerson et al., 2009]. The ultimate goal to overcome such
deficiencies is to further develop LSMs with a mechanistic
terrestrial carbon‐nitrogen cycling. They allow the coupling
of leaf phenology and leaf physiology by use of for instance a
prognostic carbon gain‐loss formulation [Thornton et al.,
2002; Arora and Boer, 2005].
[5] Satellite‐based data assimilation can serve as an inter-

mediate step to constrain unrealistic parameters of empirical
phenology models and it might be used to augment the
realism of terrestrial biosphere models [Demarty et al., 2007;
Mahadevan et al., 2008; Rüdiger et al., 2010; Knorr et al.,
2010; Rayner, 2010]. In the work of Stöckli et al. [2008b]
we presented a local‐scale data assimilation framework
based on the Ensemble Kalman Filter (EnKF) [Evensen,
2003, 2009] that was able to mitigate several phenology
model deficiencies by conditioning empirical model param-
eters with satellite‐based phenological observations.
[6] Our local‐scale data assimilation framework is however

unrealistic for the prediction at the regional scale due to the
increase of landscape heterogeneity. A single set of param-
eters representing a mixed vegetation signal of a specific
location cannot be used at another location with a different
vegetation composition. A global‐scale prediction would
hence require a cumbersome parameterization procedure for
each grid point. In order to be useful on global scale, our
previous framework needs to be extended. The main question
is then how to select the bins needed to disaggregate global
phenology into a discrete set of functional classes. It was
chosen here to split the mixed landscape into a discrete set of
plant functional types (PFTs) and elevation classes (HGTs)
for the following reasons. In earth system models the terres-
trial biochemical cycle is often decomposed on the subgrid‐
scale by using PFTs [Sitch et al., 2003; Kucharik et al., 2006;
Thornton et al., 2007]. In comparison to biomes PFTs group
plant species with similar physiological, structural and phe-
nological traits. Satellite remote sensing data can be used to
derive PFTs globally [Bonan, 2002; Lawrence and Chase,
2007]. However, any satellite‐based classification is ulti-
mately constrained by a incomplete set of functional traits
[Ustin and Gamon, 2010] that only account for optical veg-
etation properties. Elevation classes are used since recent
findings show that for instance a 100 m elevation difference
can shift the leaf‐out date by several days [Fisher et al., 2006]
which requires a subgrid‐scale treatment of the forcing
weather data in a global prediction where grid cells can
include substantial variability in elevation.
[7] The aim of this study is to create a globalMODIS‐based

reanalysis data set of vegetation phenology. It should provide
a data assimilation and modeling framework to earth system
modelers with the capability to assimilate and predict FPAR
and LAI of natural vegetation types. We firstly would like to
evaluate whether the chosen data assimilation scheme allows
to constrain a PFT‐dependent parameter set with 10 years
of assimilated MODIS data. We secondly would like to test
whether the chosen phenology model, the PFT and HGT
classification and the final satellite‐constrained parameter set
are suited to yield realistic global‐scale phenological pre-
dictions. In section 2 the prognostic phenology model is
presented, followed by a description of the data assimilation
system. Global‐scale data assimilation experiments are then

performed to constrain a PFT‐dependent phenological param-
eter set. This parameter set is used to predict global, regional
and local FPAR and LAI. A global phenological reanalysis
data set covering 50 years (1960–2009) is finally presented.
Analysis of observed and predicted FPAR and LAI followed
by a thematic discussion then evaluate the soundness of our
method and data set.

2. Methods

2.1. Phenology Model

[8] The GSI (Growing Season Index) by Jolly et al. [2005]
diagnoses the state of vegetation by use of three major cli-
matic drivers serving as surrogates for the underlying con-
trols on vegetation phenology: low temperatures, evaporative
demand, and photoperiod. Stöckli et al. [2008b] and this study
extended the GSI model into a prognostic phenology model
that predicts the biophysical vegetation states FPAR and LAI.
2.1.1. Theory
[9] The GSI (−) is the product of three environmental

factors f (T ), f (L) and 1 − f (W),

GSI ¼ f Tð Þ � f Lð Þ � 1� f Wð Þð Þ ð1Þ

f xð Þ ¼
0 if x � xmin
x�xmin

xmax�xmin
if xmin < x < xmax

1 if x � xmax

8<
: ; ð2Þ

where x = {T , L, W} are multiday running mean averages of
the minimum daily temperature Tm (K), the mean daily global
radiation Rg (W m−2) and the mean daily vapor pressure
deficit vpd (mb), using averaging times tT , tL and tW (days).
Tmax, Tmin, Lmax, Lmin, Wmax and Wmin are maximum and
minimum T , L and W, respectively. L can alternatively be
driven by photoperiod (day length) instead of global radiation
as suggested by Jolly et al. [2005] and scientifically outlined
by Körner [2006].
[10] The prognostic phenological state P (−) can be related

to the biophysical state FPAR (−) by use of a linear rela-
tionship [Sellers et al., 1996a; Los et al., 2000],

P ¼ f FPARð Þ ð3Þ

where f (x) is given in equation (2), FPARmin and FPARmax

are the minimum and maximum FPAR corresponding to the
least and most developed state of vegetation. The growth
vector ∂GSI/∂t (−) then gives the direction and rate of leaf
growth or decay used to calculate the change in FPAR with a
logistic growth model,

@GSI

@t
¼ GSI� P ð4Þ

@FPAR

@t
¼ � � @GSI

@t
� P 1� Pð Þ: ð5Þ

As presented by Dickinson et al. [2008] growth and senes-
cence can be modeled as two separate processes. We choose
a different maximum rate for leaf growth gg (day

−1) and leaf
senescence (gd) instead,

� ¼ �g if @GSI � 0
�d if @GSI < 0

�
: ð6Þ
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According to Sellers et al. [1996a] and Los et al. [2000] the
biophysical state LAI (m2 m−2) can be related to FPAR by
use of the Monsi‐Saeki light interception model based on
Beer’s law for LAI, respectively [Monsi and Saeki, 2005],

@LAI

@t
¼ @LAI

@FPAR

@FPAR

@t
ð7Þ

LAI ¼ ln 1� FPAR=fvð Þ
ln 1� FPARsatð Þ LAImaxfv; ð8Þ

where fv (−) is the vegetation fraction and FPARsat (−) is
the FPAR value reached at the maximum leaf area index
LAImax (m

2 m−2).
2.1.2. Implementation
[11] A semi‐implicit numerical scheme is used for the time

integration. In comparison to Stöckli et al. [2008b] each grid‐
scale FPAR and LAI prediction is composed of subgrid‐scale
predictions covering h = 1 … nHGT elevation classes (HGT)
and p = 1 … nPFT plant functional type (PFT) classes.
Meteorological forcing is downscaled by HGT. Phenological
model parameters are decomposed by PFT. The prognostic
states are therefore decomposed by both HGT and PFT. They
can be identified by their superscript time indices t and t + 1 in
the following equations. GSI is diagnosed at every time step,

GSI p; hð Þ ¼ f T tþ1 p; hð Þ� � � f Ltþ1 p; hð Þ� � � 1� f W tþ1 p; hð Þ� �� �
;

ð9Þ

with new prognostic values of xt+1 = {T , L,W} that depend on
their previous values xt, on the current elevation‐dependent
weather forcing y = {Tm, Rg, vpd} and on the PFT‐specific
time averaging parameters z = {tT , tL,tW},

xtþ1 p; hð Þ ¼ e�1=z pð Þxt p; hð Þ þ �1� e�1=z pð Þ�y hð Þ: ð10Þ

Leaf growth DFPAR depends both on the new phenological
state GSI and the previous biophysical state FPAR,

P p; hð Þ ¼ f FPARt p; hð Þð Þ ð11Þ

DGSI p; hð Þ ¼ GSI p; hð Þ � P p; hð Þ ð12Þ

DFPAR p; hð Þ ¼ � p; hð Þ �DGSI p; hð Þ � P p; hð Þ 1� P p; hð Þð Þ
ð13Þ

� p; hð Þ ¼
�g pð Þ if DGSI p; hð Þ � 0

�d pð Þ if DGSI p; hð Þ < 0

8<
: ð14Þ

FPARtþ1 p; hð Þ ¼ FPARt p; hð Þ þDFPAR p; hð Þ: ð15Þ

Compared to Stöckli et al. [2008b] LAI is a diagnostic vari-
able derived from the prognostic state FPAR at each time
step,

LAI p; hð Þ ¼ ln 1� FPARtþ1 p; hð Þ=fv pð Þ� �
ln 1� FPARsat pð Þð Þ

LAImax pð Þfv pð Þ:
ð16Þ

[12] Grid‐scale FPAR and LAI are calculated by area
weighted summation (ap and ah are fractional areas for each
PFT and HGT class) of the PFT‐ and HGT‐specific FPAR
and LAI states:

FPAR ¼
XnHGT
h¼1

XnPFT
p¼1

ahapFPAR p; hð Þ ð17Þ

LAI ¼
XnHGT
h¼1

XnPFT
p¼1

ahapLAI p; hð Þ: ð18Þ

[13] The following numerical constraints are used:
P(1 − P) = max(P(1 − P),0.01); fv = 1.0 since the vegetation
fraction is represented by the fractional areas ap of each PFT;
FPARsat = min(max(FPARsat, 0.001),0.999). Natural loga-
rithms in equation (16) are constrained to be larger than 0.0
and lower than 1.0.

2.2. Data Assimilation Model

[14] Ensemble data assimilation is the key method of this
study. It enables to find realistic values as well as their
uncertainties for a large set of unknown PFT‐specific model
parameters in the above equations by use of a global set of
satellite observations.
2.2.1. Theory
[15] The Ensemble Kalman Filter (EnKF) after Evensen

[1994, 2003] is applied in this study with modifications for
joint state and parameter estimation following Moradkhani
et al. [2005] and Evensen [2009]. The EnKF conditions N
prior model states and parameter ensemble members with m
observations yielding a posterior model state and parameter
ensemble,

Aa ¼ Af þK D�HAf
� �

; ð19Þ

where Af is the ensemble matrix containing the prior model
states and parameters. They are updated to Aa when new
observations D become available. H is the operator relating
observed to model states and parameters, D − HAf is the
matrix of innovation andK is theKalman gain (for details, see
Evensen [2003]). A is a matrix holding N ensemble members
of the vector y with n states x and parameters �. D is the
matrix holding N ensemble members of the vector d with m
observations,

A ¼  1;  2; . . . ;  Nð Þ 2 <n�N ;  ¼ x; �ð Þ ð20Þ

D ¼ d1; d2; . . . ; dNð Þ 2 <m�N ð21Þ

 0
i ¼ x0; �0

� �þ !i; i ¼ 1 . . .N ; ! � N 0;V 0
 

� �
ð22Þ

di ¼ d þ �i; i ¼ 1 . . .N ; � � N 0;Vdð Þ: ð23Þ

[16] The state and parameter ensemble members yi
0 are

perturbed at the beginning of themodel integration by use of a
Gaussian distribution with mean 0 and initial variance Vy

0 .

STÖCKLI ET AL.: GLOBAL REANALYSIS OF PHENOLOGY G03020G03020

3 of 19



The observation ensemble members di are perturbed with
mean 0 and with the observation variance Vd at each analysis
time step.
2.2.2. Implementation
[17] States and parameters making up the Matrix A are

defined in Table 1 with initial (prior) values similar to those
given by Jolly et al. [2005] and variances encompassing the
orders of magnitude found in the global climate system.
[18] Directly assimilating all global 1 km MODIS FPAR

and LAI observations would yield a Matrix D with dimen-
sions of O(109) observations × O(103) ensemble members
which is computationally very expensive to solve with the
EnKF framework. Therefore, superobservations d̂ for each
model grid cell are created from observations dowith o = 1…
nobs:

wo ¼ 1=Vdo ð24Þ

âh ¼
P

woahoP
wo

ð25Þ

âp ¼
P

woapoP
wo

ð26Þ

V̂d ¼
P

w2
oVdoP
w2
o

ð27Þ

d̂ ¼
P

wodoP
wo

ð28Þ

D ¼ d̂i þ �i; i ¼ 1 . . .N ; � � N 0; V̂d

� �
; ð29Þ

where d̂ and V̂ d are the grid‐scale superobservation and its
uncertainty, and ah and ap are the grid‐scale fractional HGT

and PFT areas of the superobservation. By use of the
weighting scheme wo superobservations contain the highest
quality satellite data within each grid cell.
[19] The observation operator HA is created by linearly

aggregating modeled FPAR and LAI weighted by observed
elevation distribution âh and PFT distribution âp for each
superobservation:

HA′i ¼
X
h

X
p

âhâp xi p; hð Þ � x p; hð Þð Þ; i ¼ 1 . . .N ð30Þ

HA′ ¼ HA′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
h

P
p âhâpvar x p; hð Þð Þ

q
var HA′ð Þ ð31Þ

HA ¼ HA′þ
X
h

X
p

âhâpx p; hð Þ; ð32Þ

where x = [FPAR, LAI] is predicted by the prognostic phe-
nology model. Ensemble perturbationsHA′ are rescaled with
the state variance because the weighed addition of ensemble
members by definition deflates the ensemble variance when
not all weights are equal.
[20] Aa is calculated by use of the square root implemen-

tation of the EnKF scheme as presented by Evensen [2004,
section 7.3, equations (69)–(93)] using the low‐rank pseu-
doinverse calculation because the observation count in our
analysis will always exceed the ensemble size. Overdispersal,
overconfidence and nonphysical drift of the posterior state
and parameter ensemble is taken care of by applying:

Aa ¼ Aa � A
a� �
min �

var Af
� �

var Aað Þ ; 1:0
 !

þ A
a ð33Þ

Aa ¼ Aa � A
a� �
max �

var Af
� �

var Aað Þ ; 1:0
 !

þ A
a ð34Þ

Aa ¼ Aa þ Amin � A
a� �

when A
a
< Amin ð35Þ

Aa ¼ Aa þ Amax � A
a� �

when A
a
> Amax; ð36Þ

where a = 1.0 is the upper limit for the ensemble dispersal,
relative to the prior ensemble variance, b = 0.1 is the lower
limit for the ensemble shrinkage, relative to the prior
ensemble variance, and Amin and Amax are the lower and
upper bounds for the ensemble mean as given in Table 1. It is
important to note that the latter physical limits do only move
the ensemblemeanwithout modifying the ensemble variance.
[21] Aa is a global solution that updates all local states and

parameters with a single global analysis. This is needed to
estimate a single global set of parameters. The presented
assimilation scheme can also be used for state estimation.
Each local analysis then uses a spatial influence function that
updates only states close to the observations. Such a local
analysis for state estimation could follow the global analysis
for parameter estimation as for instance outlined by equations
(80) and (81) in the work of Evensen [2003].

Table 1. State and Parameter Vector y, Initial Values y0, Initial
Variances Vy

0, Minimum and Maximum Bounds for the Ensemble
Mean

Variable y0 Vy
0 Minimum Maximum Units

States x
FPAR 0.5 0.5 0.0 1.0 ‐
LAI 2.5 1.0 0 10 m2 m−2

T 0.25 200 350 K
L 10 0 1000 W m−2

W 0.01 0 100 mb

Parameters �
Tmax 280 50 100 350 K
Tmin 265 50 100 350 K
Lmax 150 1000 −100 500 W m−2

Lmin 50 1000 −100 500 W m−2

Wmax 30 50 −25 50 mb
Wmin 10 50 −25 50 mb
FPARmin 0.05 0.01 0.0 1.0 ‐
FPARmax 0.95 0.01 0.0 1.0 ‐
gg 0.33 0.01 0.05 1.0 days−1

gd 0.33 0.01 0.05 1.0 days−1

LAImax 7.0 0.5 0 10 m2 m−2

FPARsat 0.95 0.01 0.5 1.0 ‐
tT 21 10 5 100 days
tW 21 10 5 100 days
tL 21 10 5 100 days
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2.3. Data

2.3.1. Meteorological Forcing Data
[22] Daily minimum temperature Tm, daily mean global

radiation Rg and daily mean vapor pressure deficit vpd serve
as forcing weather data for the prognostic phenology model.
1° × 1° gridded ECMWF ERA 40 [Uppala et al., 2005] are
used during 1958–1989 and ERA Interim [Berrisford et al.,
2009] are used during 1990–2006. The ensemble mem-
bers of Tm, Rg and vpd are stochastically perturbed at each
grid point and at each time step with a variance of 0.025 K,
1.0 W m−2 and 0.005 mb, respectively.
[23] The grid‐scale 1° × 1° ERA 40 and ERA Interim data

are the starting value for calculating Tm, vpd and Rg for each
subgrid‐scale elevation class. Subgrid‐scale Tm is derived
from grid‐scale Tm by use of a lapse rate of −0.6 K 100 m−1;
subgrid‐scale vpd is calculated by keeping the mixing ratio
constant with height and applying the subgrid‐scale Tm to
the vpd calculation. Subgrid‐scale Rg increases by 0.3 Wm−2

100 m−1 (mainly due to decreased atmospheric optical
thickness at greater elevation). The local‐scale experiments
carried out at the four FLUXNET sites are driven by the grid‐
scale 1° × 1° ERA 40 and ERA Interim weather forcing
downscaled to the single elevation class of the respective
FLUXNET site.
2.3.2. Satellite Observation Data
[24] TERRA MODIS FPAR and LAI (MOD15A2,

Collection 5 [Myneni et al., 2002]) fill the observation vector
d in the assimilation experiments. They are also used as
comparison data in section 3. Observations are quality
screened and used only if their values are inside the valid
range, and if none of the following MOD15A2 quality flag
bits are set:

FparLai bit 2 (dead detectors)
FparLai bits 3 or 4 (clouds present or unclear)
FparLai bit 7 (failed retrieval)
FparExtra bit 0 or 1 (pixel not on land)
FparExtra bit 2 (snow or ice)
FparExtra bit 5 (internal cloud mask)
FparExtra bit 6 (cloud shadow detected)
[25] Observation uncertainty Vd for valid observations is

calculated by multiplying the minimum uncertainty with
the sum of the “severity factor” s which is then added to the

minimum uncertainty. Minimum uncertainty is defined as
0.05 (−) for FPAR and 1.0 (m2 m−2) for LAI.

s = 0
if FparLai bit 0 (back up algorithm) set: s = s + 1
if FparLai bit 5 (saturated retrieval) set: s = s + 2
if FparLai bit 6 (empirical method used) set: s = s + 4
if FparExtra bit 3 (aerosols present) set: s = s + 3
if FparExtra bit 4 (cirrus clouds detected) set: s = s + 8
2.3.3. Elevation Data
[26] The subgrid‐scale distribution of elevation classes is

derived from the gap‐filled CGIAR‐CSI SRTM global ele-
vation data set version 4 (A. Jarvis et al., Hole‐filled seam-
less SRTM data v4, http://srtm.csi.cgiar.org, 2008), extended
to the polar areas with GTOPO30 elevation data [U.S.
Geological Survey, 1996]. The nHGT elevation classes are
equally distributed over two standard deviations of the ele-
vation range in the assimilation area. Elevations below or
above the lowest or highest class are counted to the lowest
and highest class, respectively. The area fraction ah for each
elevation class is calculated by grid cell.
2.3.4. Plant Functional Type Data
[27] The subgrid‐scale distribution of 35 plant functional

type classes is derived from MOD12Q1 Collection 4 Land
Cover [Friedl et al., 2002], MOD44B Collection 3 Vegeta-
tion Continuous Fields [Hansen et al., 2003], AVHRR Tree
Cover Continuous Fields [Defries et al., 2000], MOD15A2
Collection 5 [Myneni et al., 2002], global crop data [Leff
et al., 2004], global temperature (Version 2.02) and precipi-
tation (Version 2.01) data [Wilmott and Matsuura, 2007],
following the method described by Lawrence and Chase
[2007] and Bonan et al. [2002]. The resulting PFT data set
contains the area fraction ap for each of the 35 PFTs by grid
cell. The PFT processing is described in Appendix A, and a
list of PFTs is given in Table 2. In this publication only the 15
natural PFTs are analyzed even though all 35 PFTs were
included in the data assimilation.

2.4. Experimental Setup

[28] The data assimilation experiments constrain a set of
model parameters. The parameters are then used in global
prediction experiments. Figure 1a displays the geographic
location of the 256 manually selected regions used for the
data assimilation experiments. In order to start where our
previous study has ended, the 4 region selection (red squares)
includes a temperate, mediterranean, boreal and tropical
ecosystem at four FLUXNET sites that are identical to the
ones used by Stöckli et al. [2008b]. Figure 1b then shows how
the 256 region selection finally becomes representative for
the full range of climatic conditions needed in a global pre-
diction. The technical details on both the data assimilation
and the prediction model are given in Appendix B.
2.4.1. Data Assimilation
[29] The four data assimilation experiments span 4, 16, 64

and 256 regions with 0.5° × 0.5° spatial coverage per region
(subsequently labeled as 4, 16, 64 and 256). Each region is
subdivided into 25 0.1° × 0.1° grid cells, where each grid cell
has a subgrid‐scale representation of 10 HGT classes and
35 PFT classes. 1000 ensemble members are integrated in
time. Prior model parameters and states are initialized and
perturbed as given in Table 1. The phenology model is inte-
grated for 30 years by cycling the 10 year observation period

Table 2. List of PFTs Including Their Abbreviationsa

PFT
Number PFT Name

PFT
Abbreviation

1 Bare soil, rock, ice, permanent snow bar all
2 Trees: temperate evergreen needleleaf enf tem
3 Trees: boreal evergreen needleleaf enf bor
4 Trees: boreal deciduous needleleaf dnf bor
5 Trees: tropical evergreen broadleaf ebf tro
6 Trees: temperate evergreen broadleaf ebf tem
7 Trees: tropical deciduous broadleaf dbf tro
8 Trees: temperate deciduous broadleaf dbf tem
9 Trees: boreal deciduous broadleaf dbf bor
10 Shrubs: evergreen broadleaf ebs all
11 Shrubs: temperate deciduous broadleaf dbs tem
12 Shrubs: boreal deciduous broadleaf dbs bor
13 Grass: Arctic c3 c3g arc
14 Grass: non‐Arctic c3 c3g nar
15 Grass: c4 c4g all

aOnly the PFTs of natural vegetation types are given.
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